
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
As a 3.00-mol sample of a monatomic ideal gas expands adiabatically, the work done on it is −2.50 103 J. The initial temperature and pressure of the gas are 400 K and 2.60 atm. Calculate the following.
(a) the final temperature
K
(b) the final pressure
atm
K
(b) the final pressure
atm
Expert Solution

arrow_forward
Step 1
Given:
Number of moles(n) = 3
Initial temperature(Ti) = 400 K
Initial pressure(Pi) = 2.6 atm
(a).
work done in adiabatic process
Here, cv for monoatomic is
Therefore the final temperature is 333.18 K
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ideal gas initially at 340 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 12.6 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas? Karrow_forwardA cylinder of volume 0.320 m3 contains 10.5 mol of neon gas at 17.4°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa(b) Find the internal energy of the gas. J(c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J(d) What is the temperature of the gas at the new volume? K(e) Find the internal energy of the gas when its volume is 1.000 m3. J(f) Compute the change in the internal energy during the expansion. J(g) Compute ΔU − W. J(h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? This answer has not been graded yet. (i) Compute Q, the thermal energy transfer. J(j) What symbolic relationship between Q, ΔU, and W is suggested by the values obtained?arrow_forwardA diatomic ideal gas contracts at constant pressure of 159 kPa from 2.7 m³ to 1.7 m³. Calculate the change in the internal energy in kJ during the process.arrow_forward
- An ideal monatomic gas expands adiabatically from 0.530 m³ to 1.72 m³. If the initial pressure and temperature are 1.30 × 105 Pa and 355 K, respectively, find the number of moles in the gas, the final gas pressure, the final gas temperature, and the work done on the gas. HINT (a) the number of moles in the gas (Enter your answer to at least three significant figures.) mol (b) the final gas pressure (Enter your answer in Pa, to at least three significant figures.) Pa (c) the final gas temperature (in K) K (d) the work done on the gas (in J) Jarrow_forwardAn ideal monatomic gas expands isothermally from 0.570 m³ to 1.25 m³ at a constant temperature of 800 K. If the initial pressure is 1.18 x 105 Pa find the following. (a) the work done on the gas (b) the thermal energy transfer Q J (c) the change in the internal energy Jarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON