College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An object travels in a vertical circle of 1.50 m radius. When the object is traveling downward and is 31.5° from its lowest point, its total acceleration is
a = (18.5î + 16.2ĵ) m/s2.
At this instant, determine the following. (Take the angle 31.5° clockwise from the axis of the circle that intersects the center and the lowest point. Assume that the +x axis is to the right and the +y axis is up along the page.)
a)magnitude of radial acceleration
b)magnitude of tangential acceleration
c)speed of the object
d)velocity of the object (Express your answer in vector form.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 11 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The NEXT morning, you wake up in a strange room yet again, and this time you drop a ball from a height of 1.33 m above the floor. The ball hits the floor 0.365 s after your drop it. You guess that you must have been taken to an alien planet with gravity different from Earth s. What is this planet s g (that is, the magnitude of the acceleration due to gravity on this planet)? 40.0 m/s^2 20.0 m/s^2 10.0 m/s^2 15.0 m/s^2arrow_forwardAn object travels in a vertical circle of 1.43 m radius. When the object is traveling downward and is 28.0° from its lowest point, its total acceleration is a = (18.51 + 16.2ĵ) m/s². At this instant, determine the following. (Take the angle 28.0° clockwise from the axis of the circle that intersects the center and the lowest point. Assume that the +x axis is to the right and the +y axis is up along the page.) esc 7 (a) magnitude of the radial acceleration m/s² (b) magnitude of the tangential acceleration m/s² (c) speed of the object m/s (d) velocity of the object (Express your answer in vector form.) m/s v= 1 ² F1 Q A 1 N 2 Q F2 W S 3 X # H option command 80 F3 E D $ 4 C 990 GOD F4 R F % 67 8 5 F5 V T MacBook Air 6 G F6 Y B & 7 H 4 F7 U N 00 * 8 J FB 1 ( 9 M F9 K O O < A I -10 L || ! P V F11 1 + { [ 2 412 1 - option commandarrow_forwardYou are exploring a planet and drop a small rock from the edge of a cliff. In coordinates where the +y direction is downward and neglecting air resistance, the vertical displacement of an object released from rest is given by y − y0 = 1/2gplanett2, where gplanet is the acceleration due to gravity on the planet. You measure t in seconds for several values of y − y0 in meters and plot your data with t2 on the vertical axis and y − y0 on the horizontal axis. Your data is fit closely by a straight line that has slope 0.300 s2/m. Based on your data, what is the value of gplanet?arrow_forward
- You can use the formula for centripetal acceleration OR You have to calculate the average acceleration directly from the definition, a = delta v / delta t. You have to first get a_x by using the velocity's initial and final x components, do a_y from the y components, and then use the Pythagorean formula to get the magnitude of the acceleration vector.arrow_forwardIn a time of 2.67 h, a bird flies a distance of 86.7 km in a direction 30.2 degrees east of north. Take north to be the positive y direction and east to be the positive x direction. Express your answers in km/h. What is the x component of the bird’s average velocity? What is the y component of the bird’s average velocity?arrow_forwardFind the magnitude of the instantaneous acceleration (in m/s²) of an object that moves at a constant speed around a circle if it take it 4.24 s to complete one revolution. The radius of the circle is 2.52 m.arrow_forward
- An airplane makes a gradual 270° turn (heading goes from north to west to south to east) while flying at a constant speed of 212 m/s and maintaining the same altitude. The process takes 15.6 seconds to complete and the radius of the turn is 2105 m. For this turn, the magnitude of the average acceleration of the plane is?arrow_forwardment Chapter 04, Problem 039 Your answer is partially correct. Try again. In the figure, a ball is thrown leftward from the left edge of the roof, at height h above the ground. The ball hits the ground 1.80 s later, at distanced = 26.0 m from the building and at angle 0 = 56.0° with the horizontal. (a) Find h. (Hint: One way is to reverse the motion, as if on videotape.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown (positive angle for above horizontal, negative for below)? (a) NumberT32.3 Units (b) NumberÍ Units m/s 21.9 (c) Number 40.4 Units (degrees) Click if you would like to Show Work for this question: Open Show Work Privacy PolicY. I 2000-2021 John Wiley & Sons, Inc. All Rights Reserved. A Division of John Wiley & Sons, In e to search 99+arrow_forwardAn object has an initial velocity of 29.0 m/s at 95.0° and an acceleration of 1.90 m/s2 at 200.0°. Assume that all angles are measured with respect to the positive x-axis. (a) Write the initial velocity vector and the acceleration vector in unit vector notation. (b) If the object maintains this acceleration for 12.0 seconds, determine the average velocity vector over the time interval. Express your answer in your unit vector notation.arrow_forward
- A car drives around a circular track of diameter 199 m at a constant speed of 35.6 m/s. During the time it takes the car to travel 168 degrees around, what is the magnitude of the car s average acceleration?arrow_forwardA woman rides a carnival Ferris wheel at radius 18 m, completing 4.8 turns about its horizontal axis every minute. What are (a) the period of the motion, and the magnitude of her centripetal acceleration at (b) the highest point and (c) the lowest point? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardA rotating fan completes 1180 revolutions every minute. Consider the tip of a blade, at a radius of 20.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion? (a) Number i Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON