College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 1.80 T field with his fingers pointing in the direction of the field. His wedding ring has a diameter of 2.25 cm, and it takes 0.360 s to move it into the field.
(a)
What average current is induced in the ring if its resistance is 0.0100 Ω? (Enter the magnitude in amperes.)
A
(b)
What average power is dissipated (in W)?
W
(c)
What average magnetic field is induced at the center of the ring? (Enter the magnitude in teslas.)
T
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.3 T field with his fingers pointing in the direction of the field. (a) Find the average emf induced in his wedding ring, given its diameter is 2 cm and assuming it takes 0.29 s to move it into the field.arrow_forwardAn MRI technician moves her hand from a region of very low magnetic field strength ( approximately zero) into the MRI scanner's field in a quick motion, taking 3.1 milliseconds. The MRI is essentially a solenoid, with 1500 loops of wire. By doing so, a current of 0.15 milliAmps is induced in her wedding ring. If her wedding ring has a diameter of 1.95 cm and it has measured resistance of 119 Ohms, what is the magnetic field in the MRI.arrow_forwardProblem 14: Part (a) Express the current I in terms of B, N, and d. I = ______ Part (b) Calculate the numerical value of I in amps. I = ______arrow_forward
- An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.10 T field with his fingers pointing in the direction of the field. His wedding ring has a diameter of 2.11 cm, and it takes 0.320 s to move it into the field. (a)What average current is induced in the ring if its resistance is 0.0100 Ω? (Enter the magnitude in amperes.) A (b)What average power is dissipated (in W)? W (c) What average magnetic field is induced at the center of the ring? (Enter the magnitude in teslas.)Tarrow_forward(d) Calculate the magnitude of torque (in Nm) exerted by the magnetic field on the coil at the instant when the emf is a maximum. N.m (e) What is the maximum power delivered to the coil (in W)? W (f) What If? If the coil is constructed from aluminum wire, what is the cross-sectional area of the wire (in m²)? The resistivity of aluminum is 2.82 x 10-8 Q. m. m² (g) What If? Suppose the coil now has the same number of turns, dimensions, and resistance, but the maximum current that the wire can now safely carry is 4.50 A. What now is the maximum angular speed (in rad/s) with which the coil can be rotated in the same 2.20 T magnetic field? rad/sarrow_forwardA loop of highly conducting wire is placed in a magnetic field that is increasing out of the page (through the loop) at a rate of 1.80 T/s. If the loop has an area of 0.400m^2, calculate the current flowing in Amps through the 5.00 ohm resistor.arrow_forward
- A flat coil of wire has an area A, N turns, and a resistance R. It is situated in a magnetic field, such that the normal to the coil is parallel to the magnetic field. The coil is then rotated through an angle of 90°, so that the normal becomes perpendicular to the magnetic field. The coil has an area of 1.5 × 10-³ m², 50 turns, and a resistance of 1902. During the time while it is rotating, a charge of 6.7 × 10-5 C flows in the coil. What is the magnitude of the magnetic field? Xarrow_forwardA bicycle generator rotates at 1,800 rad/s, producing a 15.5 V peak emf. It has a 45-turn, 1.00 by 3.00 cm rectangular coil in a 0.640 T field. It is driven by a 1.48 cm diameter wheel that rolls on the outside rim of the bicycle tire. (a) What is the velocity of the bicycle? (Enter the magnitude in m/s.) m/s (b) What is the maximum emf (in V) of the generator when the bicycle moves at 10.0 m/s, noting that it was 15.5 V under the original conditions? V (c) If the sophisticated generator can vary its own magnetic field, what field strength (in T) will it need at 5.00 m/s to produce a 9.00 V maximum emf?arrow_forwardA circle wire loop with 10 turns of wire has an area of 0.5 m2. It is initially in a 0.3 T magnetic field. Then over 0.5 seconds it is moved to a location with no magnetic field. What is the magnetic flux? (The unit of flux is Weber, W) What is the induced emf (voltage)?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON