Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
An important parameter in fluid flow problems involving thin films is the Weber number (We) which can be expressed in equation form as We=[pv^2L/(omega)] where p is the density of the fluid, v is a velocity, L is a length, and (omega) is the surface tension of the fluid. If the Weber number is dimensionless, what are the dimensions of the surface tension (omega)?
Expert Solution
arrow_forward
Step 1 Introduction
In fluid mechanics Several terms comes frequently, For our convenience these termed as single term and it is observed that this are the Diamensionless terms
In fluid mechanics following diamensionless numbers are used
1) reynolds number
2) Froude number
3) Nusselt number
4) Euler number
5) Mach number
6) Weber number
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Fill in blank hellarrow_forwardWhich of the following dimensionless parameters is the correct arrangement of the given parameters? (select all that O a. Pi = (Dp)/(Rho*V) Dp: Pressure change Rho: Density V: Velocity O b. Pi = (V*L*(Rho))/(nu) V: Velocity L: length Rho: Density nu: Dynamic viscosity O. Pi = Q/((A^1.5)*w) Q: Volumetric discharge rate A: Area w: Angular velocity O d. Pi = (a)(t^2)/(L) L: length a: acceleration t timearrow_forwardPressure drop AP depends on four variables: the diameter of the pipe D, the density of the fluid p, the kinematic viscosity of the fluid v and the mean velocity v. Applying Buckinham's Pi Theorem, a dimensionless pi-group can be identified using the following power product: [AP] = [D]ª[p]b[v][v]ª. Which of the following statements in term of [T] is correct? Select one: O [T]: -2 = -c-d [T]: -1 = -c-d [T]: -2 = -c-2*d [T]: -2 = -2*c-d [T]: -2=-c+darrow_forward
- **Problem 1.15 Suppose you wanted to describe an unstable particle, that spon- taneously disintegrates with a "lifetime" t. In that case the total probability of finding the particle somewhere should not be constant, but should decrease at (say) an exponential rate: too P(t) = | V(x,1)1²dx = e=1/*. -0- A crude way of achieving this result is as follows. In Equation 1.24 we tacitly assumed that V (the potential energy) is real. That is certainly reasonable, but it leads to the "conservation of probability" enshrined in Equation 1.27. What if we assign to V an imaginary part: V = Vo – ir, where Vo is the true potential energy and r is a positive real constant? (a) Show that (in place of Equation 1.27) we now get dP 21 = --P. dt (b) Solve for P(1), and find the lifetime of the particle in terms of r.arrow_forward2. The apparatus shown below is designed to measure the density of an unknown fluid (p2₂). The two sides of the device are separated by a movable, frictionless partition. The partition is attached to the immobile sidewalls of the device via springs (different spring constants) on either side. Before pouring fluid into the device, both springs are unstretched. The device has a rectangular cross-section and extends a width w into the page. Derive an expression for the unknown density p2 = f(p1, h₁, h₂, k₁, k2, Ax, g), where Ar is the displacement of the partition relative to its equilibrium location before the fluids are poured into the apparatus. h₁ P1 k₁ 5 P2 ли Ax k₂ h₂arrow_forwardWhat is the temperature profile for an atmosphere with uniform lapse rate y, [where y = -dT/dz]? Find the corresponding pressure p(z) and density p(z) profiles. Assume the atmosphere is an ideal gas in hydrostatic balance, with sea level temperature and pressure given by To and po, respectively. [~Holton 1.18]arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY