An H2 molecule is in its vibrational and rotational ground states. It absorbs a photon of wavelength 2.211 2 μm and makes a transition to the υ = 1, J = 1 energy level. It then drops to the υ = 0, J = 2 energy level while emitting a photon of wavelength 2.405 4 mm. Calculate (a) the moment of inertia of the H2 molecule about an axis through its center of mass and perpendicular to the H–H bond, (b) the vibrational frequency of the H2 molecule, and (c) the equilibrium separation distance for this molecule.

Principles of Modern Chemistry
8th Edition
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Chapter20: Molecular Spectroscopy And Photochemistry
Section: Chapter Questions
Problem 51AP
icon
Related questions
Question

An H2 molecule is in its vibrational and rotational ground states. It absorbs a photon of wavelength 2.211 2 μm and makes a transition to the υ = 1, J = 1 energy level. It then drops to the υ = 0, J = 2 energy level while emitting a photon of wavelength 2.405 4 mm. Calculate (a) the moment of inertia of the H2 molecule about an axis through its center of mass and perpendicular to the H–H bond, (b) the vibrational frequency of the H2 molecule, and (c) the equilibrium separation distance for this molecule.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Pure Rotational Spectra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,