
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An electron was ejected from a sodium metal surface with 6.8 x 10¹⁴ s⁻¹ radiation. What is the (minimum) wavelength (in nm) of the ejected electron? The work function of sodium is 2.50 x 10⁻¹⁹ J.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A laser pointer used in the classroom emits light at 4950 Å, at a power of 4.00 mW. (One watt is the SI unit of power, the measure of energy per unit of time. 1 W = 1 J/s). How many photons are emitted from the pointer in 115 seconds?arrow_forwardSilver has a work function, Φ, of 4.64 eV. If a sample of silver is bombarded with 213 nm photons, what will be the wavelength (in meters) of the photo-ejected electrons? (1 eV = 1.60 × 10⁻¹⁹ J, the mass of an electron is 9.109 x 10⁻³¹ kg, and Planck's constant is 6.626 x 10⁻³⁴ Js.)arrow_forwardUsing the Bohr model of an electron orbiting a nucleus, the angular momentum of Earth's orbit around the Sun is about 2.67 x 1040 g m2 s−1. Using the Bohr quantization condition, what is the quantum number n for Earth's orbit? If the Earth transitions from this orbit to n-1 (emitting a graviton, which is the gravitational anagloue of the photon), how much energy would be released? Find the frequency of the graviton.arrow_forward
- The electron microscope uses the wave property of electrons to observe very small objects. A moving electron has a wavelength described by the de Broglie equation. What would be the wavelength, in m, of an electron with a kinetic energy of 3.55 × 10⁻¹⁹ J, which would be equivalent to the energy of a photon in the visible region? (The mass of an electron is 9.11 × 10⁻²⁸ g.)arrow_forwardWhat wavelength of radiation has photons of energy 6.12×10−19 J ? Express your answer with the appropriate units.arrow_forwardPayalbenarrow_forward
- What is the maximum number of orbitals that can be identified by the following set of quantum numbers? Note that in cases where the set of quantum numbers is not "allowed," the answer will be zero. n= 4, l= 3, ml= +4 orbital(s) n= 4, l= 2, ml= –1 orbital(s)arrow_forwardPieces of potassium (Φ = 3.68 × 10–19 J) and sodium (Φ = 4.41 × 10–19 J) metal are exposed to radiation of wavelength 315 nm. What is the velocity of the electrons from potassium? What is the velocity of the electrons from sodium?arrow_forwardThermal neutrons are neutrons that move at speeds comparable to those of air molecules at room temperature. These neutrons are most effective in initiating a nuclear chain reaction among 235U isotopes. Calculate the wavelength (in nm) associated with a beam of neutrons moving at 7.00 × 102 m/s (mass of a neutron = 1.675 × 10-27 kg).arrow_forward
- The electron microscope uses the wave property of electrons to observe very small objects. A moving electron has a wavelength described by the de Broglie equation. What would be the kinetic energy, in J, of an electron with a wavelength of 0.485 nm, which would be equivalent to the wavelength of electromagnetic radiation in the X-ray region? (The mass of an electron is 9.11 × 10-28 g.)arrow_forwardThe photoelectric work function energy for tin metal is 4.38 eV (per electron). What wavelength of radiation must be directed at the surface of tin metal in order to eject electrons electrons having a maximum kinetic energy of 2.25×10 –20 Joules/electron.[Note: The electron volt (eV) is a common energy unit for work function energies. 1 eV = 1.602×10 –19 Joules.]arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY