Algorithm 1 Determining the root of the function f(x) Require: f(x) and two initial values x1 and xo that are somewhere close to the root s function s = SECANTMETHOD(f(x), x1, xo) D Set counter for iteration D Initiate difference D Specify convergence criterion D Compute function value for xo D Compute function value for x1 D Begin of iteration procedure D Calculate difference in x D Calculate difference in f D Determine next x value D Compute function value for xk D Check for convergence –> Tip –> in C: | - | → fabs(·) D Increment counter D End of iterative procedure D Define solution k + 2 d + 100 E 10-8 fo + f(xo) fi+ f(x1) while d > ɛ do Ax + xk-1 – Xk-2 Af + fk-1 – fk-2 (Ar/Af) Ck← Ik-1ー fk + f(Tk) d+ |®k – Xk-1| k + k +1 end while end function return s

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

This is the pseudocode for my practice problem (see below). What should this program look like in c++?

 

### Algorithm 1: Determining the Root of the Function \(f(x)\)

**Requirements:**  
- A function \(f(x)\).
- Two initial values \(x_1\) and \(x_0\) that are close to the root \(s\).

#### Function: \(s = \text{SECANTMETHOD}(f(x), x_1, x_0)\)

1. **Initialize**
    - \(k \gets 2\): Set counter for iteration.
    - \(d \gets 100\): Initiate difference.
    - \(\varepsilon \gets 10^{-8}\): Specify convergence criterion.
    - \(f_0 \gets f(x_0)\): Compute function value for \(x_0\).
    - \(f_1 \gets f(x_1)\): Compute function value for \(x_1\).

2. **Iteration Loop (while \(d > \varepsilon\))**
    - \(\Delta x \gets x_{k-1} - x_{k-2}\): Calculate difference in \(x\).
    - \(\Delta f \gets f_{k-1} - f_{k-2}\): Calculate difference in \(f\).
    - \(x_k \gets x_{k-1} - (\Delta x / \Delta f)\): Determine next \(x\) value.
    - \(f_k \gets f(x_k)\): Compute function value for \(x_k\).
    - \(d \gets |x_k - x_{k-1}|\): Check for convergence.
        - **Tip:** In C, use `fabs(·)` for the absolute value.
    - \(k \gets k + 1\): Increment counter.

3. **Conclusion**
    - End iterative procedure when convergence criterion is met.
    - \(s \gets x_k\): Define solution.

**End Function**

**Return:** \(s\)

This algorithm demonstrates the secant method's iterative process for finding the root of a function by refining guesses \(x_0\) and \(x_1\) based on the change in function values. The loop continues until the difference between successive approximations is less than the specified tolerance \(\varepsilon\).
Transcribed Image Text:### Algorithm 1: Determining the Root of the Function \(f(x)\) **Requirements:** - A function \(f(x)\). - Two initial values \(x_1\) and \(x_0\) that are close to the root \(s\). #### Function: \(s = \text{SECANTMETHOD}(f(x), x_1, x_0)\) 1. **Initialize** - \(k \gets 2\): Set counter for iteration. - \(d \gets 100\): Initiate difference. - \(\varepsilon \gets 10^{-8}\): Specify convergence criterion. - \(f_0 \gets f(x_0)\): Compute function value for \(x_0\). - \(f_1 \gets f(x_1)\): Compute function value for \(x_1\). 2. **Iteration Loop (while \(d > \varepsilon\))** - \(\Delta x \gets x_{k-1} - x_{k-2}\): Calculate difference in \(x\). - \(\Delta f \gets f_{k-1} - f_{k-2}\): Calculate difference in \(f\). - \(x_k \gets x_{k-1} - (\Delta x / \Delta f)\): Determine next \(x\) value. - \(f_k \gets f(x_k)\): Compute function value for \(x_k\). - \(d \gets |x_k - x_{k-1}|\): Check for convergence. - **Tip:** In C, use `fabs(·)` for the absolute value. - \(k \gets k + 1\): Increment counter. 3. **Conclusion** - End iterative procedure when convergence criterion is met. - \(s \gets x_k\): Define solution. **End Function** **Return:** \(s\) This algorithm demonstrates the secant method's iterative process for finding the root of a function by refining guesses \(x_0\) and \(x_1\) based on the change in function values. The loop continues until the difference between successive approximations is less than the specified tolerance \(\varepsilon\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY