A2.9 kg lump of aluminum is heated to 95°C and then dropped into 10.0 kg of water at 5.0°C. Assuming that the lump-water system is thermally isolated, what is the system's equilibrium temperature? Assume the specific heats of water and aluminum are 4186 and 900 J/kg-K, respectively. Number Units

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter2: The Kinetic Theory Of Gases
Section: Chapter Questions
Problem 75P: a) At what temperature do oxygen molecules have the same average speed as helium atoms ( M=4.00...
icon
Related questions
Question
A2.9 kg lump of aluminum is heated to 95°C and then dropped into 10.0 kg of water at 5.0°C. Assuming that the lump-water system is
thermally isolated, what is the system's equilibrium temperature? Assume the specific heats of water and aluminum are 4186 and 900
J/kg-K, respectively.
Number
i
Units
Transcribed Image Text:A2.9 kg lump of aluminum is heated to 95°C and then dropped into 10.0 kg of water at 5.0°C. Assuming that the lump-water system is thermally isolated, what is the system's equilibrium temperature? Assume the specific heats of water and aluminum are 4186 and 900 J/kg-K, respectively. Number i Units
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning