College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 1.20-kg object is held 1.05 m above a relaxed, massless vertical spring with a force constant of 325 N/m. The object is dropped onto the spring.
(a) How far does the object compress the spring?
m
(b) Repeat part (a), but this time assume a constant air-resistance force of 0.800 N acts on the object during its motion.
m
(c) How far does the object compress the spring if the same experiment is performed on the Moon, where g = 1.63 m/s2 and air resistance is neglected?
m
m
(b) Repeat part (a), but this time assume a constant air-resistance force of 0.800 N acts on the object during its motion.
m
(c) How far does the object compress the spring if the same experiment is performed on the Moon, where g = 1.63 m/s2 and air resistance is neglected?
m
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 4.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? Answer___________ N/marrow_forwardA vertical ideal spring, spring constant k, is compressed a distance A. A mass m is placed on top of the spring and then released. a) How high will the mass go? Н y=0 y=0 Answer: b) If instead the force exerted by the spring is given by F= -(ky+b), how high will the mass go?arrow_forwardA 3.0 kg block slides with a speed of 2.3 m/s on a frictionless horizontal surface until it encounters a spring. If the block compresses the spring 5.6 cm before coming to rest, what is the force constant of the spring? What initial speed should the block have to compress the spring by 1.4 cm?arrow_forward
- A block with a mass 3.7 kg is sitting on a frictionless ramp with a spring at rhe bottom that has a spring constant of 540 N/m. The angle of the ramp in respect to the horizontal is 36 degrees. 1) the block starts from rest and slides down the ramp a distance of 69cm before hitting the spring. how far is the spring compressed as the block comes to momentary rest? 2) after the block comes to rest the spring pushes the block back up the ramp. how fast is the block moving right after it comes off the spring. 3) what is the change in gravitational potential energy between the original positiion of the block at the top of the ramp and the position of the block when the spring is fully compressed?arrow_forwardA box slides from rest down a frictionless ramp inclined at 38.0° with respect to the horizontal and is stopped at the bottom of the ramp by a spring with a spring constant of k = 3.50 x 104 N/m. point of release 1 m compression of spring If the box has a mass of 12.0 kg and slides 3.00 m from the point of release to the point where it comes to rest against the spring, determine the compression (in m) of the spring when the box comes to rest.arrow_forwardProblem 5: A block of mass 4.2 kg is sitting on a frictionless ramp with a spring at the bottom that has a spring constant of 490 N/m (refer to the figure). The angle of the ramp with respect to the horizontal is 39⁰arrow_forward
- In starting a game of pinball, the 44.7 g ball rests on a spring, of spring constant k = 18.8 N/m, that has been compressed by 0.0900 m. If the spring is released, how far up the pinball table (which is inclined at 39.0°) does the ball go before rolling back down again? You can assume it doesn't hit any obstacles on the way up.arrow_forwardA 5.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? N/marrow_forwardYou attach a 2.10 kg weight to a horizontal spring that is fixed at one end. You pull the weight until the spring is stretched by 0.300 m and release it from rest. Assume the weight slides on a horizontal surface with negligible friction. The weight reaches a speed of zero again 0.100 s after release (for the first time after release). What is the maximum speed of the weight (in m/s)? 18.85 x Your answer is off by a factor of 2. Note that the given time is the amount of time to make one half of a period, not a full period. m/s Need Help? Read It Submit Answerarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON