College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A wagon wheel starts at rest at the top of an inclined plane that is 2m in height and rolls without slipping to the bottom. Ignore frictional forces.
(a) Assume the radius of the wheel is 0.30 m and the rim has a mass of 1.4 kg. Each of the wheel’s eight spokes, which come out from the center and are 0.30 m long, has a mass of 0.28 kg. Find the wheel’s moment of inertia.
(b) Find the speed of the object at the bottom of the plane.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius ?h=0.209 m and mass 5.08 kg, and two thin crossed rods of mass 8.66 kg each. A farmer would like to replace his wheels with uniform disks ?d=0.0462 m thick, made out of a material with a density of 7830 kg per cubic meter. If the new wheel is to have the same moment of inertia about its center as the old wheel about its center, what should the radius of the disk be?arrow_forwardYou are riding your bicycle down the street at a speed of 16 m/s. Your bicycle's frame has a mass of 6.0 kg, and each of its two wheels has mass 2.2 kg and radius 0.34 m. Each wheel can be thought of as a hollow hoop (assuming that the rim has much larger mass than the spokes). What is the total kinetic energy of the bicycle (in Joules)?(take into account both the translational and rotational motion.)arrow_forwardA hollow cylinder has radius 9.5 cm and mass 1.8 kg. The cylinder rolls without slipping at a speed of 1.488 m/s, and begins to roll without slipping up a(n) 11° slope. What is the maximum height the cylinder will reach on the inclined plane when it comes to a stop?arrow_forward
- In the figure, two 6.90 kg blocks are connected by a massless string over a pulley of radius 1.10 cm and rotational inertia 7.40 x 10-4 kg-m². The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 0.900 rad in 148 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T1, and (d) string tension T2? Assume free-fall acceleration to be equal to 9.81 m/s?. (a) Number i Units (b) Number Units (c) Number Units (d) Number Units >arrow_forwardIn the figure, a constant horizontal force The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude 0.82 m/s2. (a) What is the magnitude of the frictional force on the wheel? (b) What is the rotational inertia of the wheel abeut the rotation axis through its center of mass? of magnitude 12 N is applied to a wheel of mass 7.8 kg and radius 0.27 m. app (a) Number Units N 6.2 (b) Number 0.683 Units kg m^2 Click if you would like to Show Work for this question: Open Show Work y Policy © 2000-2020 John Wiley & Sons, Inc. All Rights Reserved. A Division of John Wiley & Sons, Inc. Version 4.24.20.1arrow_forwardA uniform disk of mass 500 kg and radius 0.25 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. (a) How much work has the force done at the instant the disk has completed three revolutions, starting from rest? (b) Determine the torque due to the force, then calculate the work done by this torque at the instant the disk has completed three revolutions? (c) What is the angular velocity at that instant? (d) What is the power output of the force at that instant?arrow_forward
- A torque of 0.97 N*m is applied to a bicycle wheel of radius 35 cm and mass 0.75 kg. Treating the wheel as a hoop, find its angular acceleration.arrow_forwardA pulley on a frictionless axle has the shape of a uniform solid disk of mass 2.50 kg and radius 0.150m. A 1.50 kg stone is attached to a very light wire that is wrapped around the rim of the pulley (Fig), and the system isreleased from rest. (a) How far must the stone fall so that the stone has 1.20 m/s speed? (b) What percentage of the total kinetic energy does the pulley have?arrow_forwardTwo wheels have the same mass and radius of 4.9kg and 0.45 m, respectively. One has (a) the shape of a hoop and the other (b) the shape of a solid disk. The wheels start from rest and have a constant angular acceleration with respect to a rotational axis that is perpendicular to the plane of the wheel at its center. Each turns through an angle of 13 rad in 8.4 s. Find the net external torque that acts on each wheel.arrow_forward
- A 4 kg wheel held in a frame of negligible mass rolls down a 22 degree ramp. The frame is attached to a massless string, which in turn is threaded over a pulley of 4 cm radius and 0.50 kg mass. The string is then wound around a uniform hollow spherical globe (shell) having a radius of 15 cm and a mass of 0.07 kg, rotates about its vertical axis on frictionless bearings. Assuming the wheel starts from rest, find its velocity after it has traveled a distance deltas = 15 cm down the ramp.arrow_forwardIn the figure, two 6.30 kg blocks are connected by a massless string over a pulley of radius 1.30 cm and rotational inertia 7.40 x 104 kg-m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 0.800 rad in 126 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T,, and (d) string tension T,? Assume free-fall acceleration to be equal to 9.81 m/s. (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON