College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A uniform disk of mass 500 kg and radius 0.25 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. (a) How much work has the force done at the instant the disk has completed three revolutions, starting from rest? (b) Determine the torque due to the force, then calculate the work done by this torque at the instant the disk has completed three revolutions? (c) What is the
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal 790-N merry-go-round of radius 1.30 m is started from rest by a constant horizontal force of 45 N applied tangentially to the merry-go-round. Find the kinetic energy of the merry-go-round after 5.0 s. (Assume it is a solid cylinder. Also assume the force is applied at the outside edge.)arrow_forwardA hollow cylinder has radius 9.5 cm and mass 1.8 kg. The cylinder rolls without slipping at a speed of 1.488 m/s, and begins to roll without slipping up a(n) 11° slope. What is the maximum height the cylinder will reach on the inclined plane when it comes to a stop?arrow_forwardThe SI unitfor rotational kinetic energy J kg ^2 none Warrow_forward
- A pulley on a frictionless axle has the shape of a uniform solid disk of mass 2.50 kg and radius 0.150m. A 1.50 kg stone is attached to a very light wire that is wrapped around the rim of the pulley (Fig), and the system isreleased from rest. (a) How far must the stone fall so that the stone has 1.20 m/s speed? (b) What percentage of the total kinetic energy does the pulley have?arrow_forwardA bar 1m in length has a negligible mass and it is placed on a pivot point at the 0.55 m mark. A 2.3 kg mass hung at the 0 m mark and a 1.5 kg mass hung at the 1.0 m mark. The meterstick is released from rest in a horizontal position. Immediately after release, the magnitude of the SUMMATION OF TORQUE on the bar about the pivot point is most nearly A 16 N•m В 2.0 N•m C) 6 N•m 8.0 N•m E 19 N•marrow_forwardIn the system , a 12.0 kg mass is released from rest and falls, causing the uniform 10.0 kg cylinder of diameter 30.0 cm to turn about a frictionless axle through its center. How far will the mass have to descend to give the cylinder 480 J of kinetic energy?arrow_forward
- A 2.00-m long rod is hinged at one end. The rod is initially held in the horizontal position, and then released as the free end is allowed to fall. (a) What is the angular acceleration as it is released? (b) What is the angular acceleration when it reaches the vertical position? (c) Which position has the maximum angular velocity (vertical or horizontal)? (d) Which position has the maximum angular acceleration (vertical or horizontal)? (The moment of inertia of a rod about one end is ML2/3.)arrow_forwardA horizontal 810-N merry-go-round of radius 1.20 m is started from rest by a constant horizontal force of 55 N applied tangentially to the merry-go-round. Find the kinetic energy of the merry-go-round after 2.0 s. (Assume it is a solid cylinder. Also assume the force is applied at the outside edge.)arrow_forwardA horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentially to the merry-go-round. Find the kinetic energy of the merry-go-round after 2.0 s. (Assume it is a solid cylinder. Also assume the force is applied at the outside edge.) ____Jarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON