Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- . The following picture shows a LONG conductor carrying current 1. Nearby there is a conducting rectangular loop with sides a = 8 cm and b = 4 cm. The loop also carries a resistance R = 10 ohms. The curent is constant and has a value of I = 6.0 Amperes. The loop is moving away to the right with a constant velocity, V = 2 m/s. Answer the following questions at the instant of time t" when the left edge of the loop is at position "x" as shown below Use the coordinate system , x to the right, y into the board, z upward a) Write an expression for the magnetic field as a function of the distance "x" (from the LONG conductor to the loop. ) USE “+" for CCW circulation and “.“ for CW circulation. b) Write the magnetic field in "i-j-k" format at point "x" to the right of the current carrying wire in the "i-zZ" plane R a c) Write the infinitesimal area vector for the loop in "i-j-k" format d) Write the explicit integral for the magnetic flux through the area of the loop using the answer for B and…arrow_forwardDerive an expression for the current in a system like shown, under the following conditions. The resistance between the rails is R , the rails and the moving rod are identical in cross section A and have the same resistivity ρ .The distance between the rails is l, and the rod moves at constant speed v perpendicular to the uniform field B . At time zero, the moving rod is next to the resistance R .arrow_forwardA circular loop of wire of radius 16.0 cm is in a magnetic field of 4.50 · 10−3 T directedout of the page. The loop is stretched to make it long and thin, with no area betweenthe wires. The stretching takes 0.850 s. What are the magnitude and direction of theinduced emf in the loop while the loop is being stretched? Explain how you found thedirection, briefly giving all the steps of your thinking.arrow_forward
- A rectangular wire loop of height h, width w, and net electrical resistance R lies in the x-y plane. As shown in the figure below, the entire region x < 0 of space is occupied by a constant, uniform magnetic field which points in the –z direction (into the page). In order to determine the magnitude of this field, a student pulls the wire loop out of the magnetic field region at a constant velocity v in the +x-direction, and measures the current I induced in the loop during this process. I = 17 μAR = 35 ohmsh = 3 cm w = 8 cmv = 2 cm/sec a) What is the direction of the current induced in the wire loop? b)What is the magnitude B of the magnetic field?arrow_forwardTwo wires AC and BC are attached to a 7 Kg sphere that It rotates at constant speed v in the horizontal circle shown in the figure. Yes θ1 = 55° and θ2= 30 ° and d 1.4 m, determine the range of values of v for which both wires are held taut.arrow_forwardA long, straight wire carrying a current of 3.13 A moves with a constant speed v to the right. A 5-turn circular coil of diameter 12.5 cm, and resistance of 3.25 µ, lies stationary in the same plane as the straight wire. At some initial time the wire is at a distance d 8.35 cm from the center of the coil. 5.10 s later, the wire is at a distance 2d from the center of the coil. What is the magnitude and direction of the average induced current in the coil? mA magnitude direction ---Select--- O initial situation 2d final situationarrow_forward
- In the figure below, the two ends of a U-shaped wire of mass m = 7.00 g and length L = 17.0 cm are immersed in mercury (which is a conductor). The wire is in a uniform field of magnitude B = 0.0860 T. A switch (unshown) is rapidly closed and then reopened, sending a pulse of current through the wire, which causes the wire to jump upward. If jump height h = 4.00 m, how much charge was in the pulse? Assume that the duration of the pulse is much less than the time of flight. Hg. Number i X L X Units X Marrow_forwardplease include diagramarrow_forward= In the figure below, the rolling axle, 1.50 m long, is pushed along horizontal rails at a constant speed v = 11.00 m/s. A resistor R 0.4000 2 is connected to the rails at points a and b, which are directly opposite each other. The wheels make good electrical contact with the rails, so the axle, rails, and resistor form a closed-loop circuit. The only significant resistance in the circuit is R. A uniform magnetic field B = 0.0700 T is vertically downwards. 100 (a) Find the induced current I in the resistor. A (b) What horizontal force F is required to keep the axle rolling at constant speed? N (c) Which end of the resistor, a or b, is at the higher electric potential? O Point a is at a higher potential. Point b is at a higher potential. Point a and Point b are at equal potentials. (d) After the axle rolls past the resistor, does the current in R reverse direction? Yes No Explain your answer.arrow_forward
arrow_back_ios
arrow_forward_ios