Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
A triple-acting evaporator with direct current power must concentrate 15000 kg/h of an aqueous solution entering 25 C from 10% to 40% by weight. For the heating is available live steam at 2.2 at, and on the third effect a vacuum is maintained that allows the solution to boil at 30ºC. The dissolution does not present an appreciable increase in the point of boiling and its specific heat is equal to the unit for all concentrations. The integral heat transmission coefficients for effects I, II, III, in Kcal/m2*h*ºC, they are worth 2800, 2500 and 1600. Apply to each effect:
a) Hourly consumption of heating steam
b) Boiling temperature
c) The heating surface.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 6 steps with 31 images
Knowledge Booster
Similar questions
- 05: Acetylene gas (C₂H₂) at 25 °C is burned during a steady-flow combustion process with 30 percent excess air at 27 °C. It is observed that 75x10³ kJ of heat is being lost from the combustion chamber to the surroundings per kmol of acetylene. Assuming combustion is complete, determine the exit temperature of the product gases.arrow_forwardFruit juices at 30 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forward3. In an adiabatic cooling tower 500 kg/min hot water, is to be cooled from 50°C to 35°C by using air with 25°C dry bulb temperature and 15°C wet bulb temperature. The air leaves the tower with 32°C dry bulb temperature and 85% relative humidity. a. Show the points of inlet and outlet air on the PSYCHROMETRIC chart given below. Read the followings: Absolute humidity and Relative humidity of the inlet air. Absolute humidity and wet bulb temperature of the exit air. b. Calculate the volumetric flow rate of the air used. c. Why do we use cooling towers in process plant?arrow_forward
- Fruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answer kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporated / kg of steam)arrow_forwardI need the answer as soon as possiblearrow_forward2 A triple-acting evaporator with direct current power must concentrate 15000 kg/h of an aqueous solution entering 25 C from 10% to 40% by weight. For the heating is available live steam at 2.2 at, and on the third effect a vacuum is maintained that allows the solution to boil at 30ºC. The dissolution does not present an appreciable increase in the point of boiling and its specific heat is equal to the unit for all concentrations. The integral heat transmission coefficients for effects I, II, III, in Kcal/m2*h*ºC, they are worth 2800, 2500 and 1600. Apply to each effect: a) Hourly consumption of heating steam b) Boiling temperature c) The heating surface.arrow_forward
- Fruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forwardFruit juices at 20 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 3000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answerkg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporates / kg of steam)arrow_forward1. Fruit juice at 20 ° C containing 5% total solids concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2500 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product 3.175 kJ / (kg ° C). CountA. The required steam rate is = Answererkg / hour.b. Steam economy if the condensate temperature cannot be released at 90 ° C. = Answer (kg evaporated air / kg steam)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The