College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ? = 2.67 × 106 g/m3 and volume V =1.71 × 1012 m3. Recall that the universal gravitational constant is G = 6.67 × 10-11 (Nm2)/(kg2).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are out on a date, eating dinner in a restaurant that has several television screens. Most of the screens are showing sports events, but one near you and your date is showing a discussion of an upcoming voyage to Mars. (a) Your date says, “I wonder how long it takes to get to Mars?” Wanting to impress your date, you grab a napkin and draw as shownon it. Even more impressively, you tell your date that the minimum-energy transfer orbit from Earth to Mars is an elliptical trajectory with the departure planet corresponding to the perihelion of the ellipse and the arrival planet at the aphelion. You pull out your smartphone, activate the calculator feature, and perform a calculation on another napkin to answer the question above that your date asked about the transfer time interval to Mars on this particular trajectory. (b) What If? Your date is impressed, but then asks you to determine the transit time to an inner planet, like Venus.arrow_forward9 plarrow_forwardFind the escape velocity ve for an object of mass m that is initially at a distance R from the center of a planet of mass M. Assume that R≥Rplanet, the radius of the planet, and ignore air resistance. Express the escape velocity in terms of R, M, m, and G, the universal gravitational constant.arrow_forward
- A satellite is in a circular orbit of radius r around the Earth. (Use the following as necessary: G, ME, and r.) a) Determine an expression that will allow you to find the speed of the satellite. b)The satellite splits into two fragments, with masses m and 4m. The fragment with mass m is initially at rest with respect to the Earth, then falls straight towards the Earth. The fragment with mass 4m moves with initial speed vi. Find an expression for vi. c)Because of the increase in its speed, this larger fragment now moves in an elliptical orbit. Find an expression for the fragment's distance away from the center of the Earth when it reaches the far end of the ellipse.arrow_forwardHow to solve?arrow_forwardFind the escape velocity ve for an object of mass m that is initially at a distance R from the center of a planet of mass M. Assume that R > Rplanet, the radius of the planet, and ignore air resistance. Express the escape velocity in terms of R, M, m, and G, the universal gravitational constant.arrow_forward
- One way to attack a satellite in Earth orbit is to launch a swarm of pellets in the same orbit as the satellite but in the opposite direction. Suppose a satellite in a circular orbit 500 km above Earth’s surface collides with a pellet having mass 4.0 g. (a) What is the kinetic energy of the pellet in the reference frame of the satellite just before the collision? (b)What is the ratio of this kinetic energy to the kinetic energy of a 4.0 g bullet from a modern army rifle with a muzzle speed of 950 m/s?arrow_forwardI. With external gravitational field In this second part you are asked to analyze rocket propulsion with the present of gravitational field g. This appears for instance when the rocket is launching from the surface of a planet. (1) Describes why you are not allowed to use the momentum conservation here. (2) Evaluate the speed of the rocket measure by inertial observer on the ground as a function of time v(t) if the speed of the gas propulsion with respect to the rocket is vret and the burning rate is constant constant! dm dt (3) Plot v(t) that you obtained from point (2) above, for three different values of gravitational field (assuming similar initial mass), which is: Imoon = 1.62 m/s? • Gearth = 9.81 m/s? Ijupiter = 24.79 m/s? in a single plot, if the burn dm ate is constant = 1500 kg/s. Analyze your result and dt describes how the speed increases for each situation! 20:18 Ai 11/03/2022arrow_forwardwhen we calculate escape speeds, we usually do so with the assumption that the object from which we are calculating escape speed is isolated. This is, of course, generally not true in the solar system. Show that the escape speed at a point near a system that consists of two stationary massive spherical objects is equal to the square root of the sum of the squares of the escape speeds from each of the two objects considered individually.arrow_forward
- The radius of Venus (from the center to just above the atmosphere) is 6050 km (6050x103 m), and its mass is 4.9x1024 kg. An object is launched straight up from just above the atmosphere of Venus. (a) What initial speed is needed so that when the object is far from Venus its final speed is 3000 m/s? Vinitial = 10100 X m/s (b) What initial speed is needed so that when the object is far from Venus its final speed is 0 m/s? (This is called the "escape speed.") Vescape = m/sarrow_forwardA skier starts from rest and slides down a slope of length L = 1080 m and angle a = 12° relative to the ground which is latitude line of λ = 57° relative to the equator. W X 2 N X L Z α Find the deflection (in meters, including sign) of the skier when it reaches the bottom of the track due to Coriolis force. Note: 1. Assume that the gravitational force is directed into the center of the Earth and it includes the centrifugal force. 2. Think about the trajectory of the skier without the effect of Coriolis force, and from there find the effect of Coriolis on the acceleration. The acceleration is time dependent and from there you can find the deflection. 3. The deflection is very small, so be very accurate with your calculation. Use g = 9.8 m/s².arrow_forwardAfter consuming all of its nuclear fuel, a massive star can collapse to form a black hole, which is an immensely dense object whose escape speed is greater than the speed of light. Newton's law of universal gravitation still describes the froce that a black hole exerts on objects outside it. A spacecraft in the shape of a long cylinder has a length of 100m, and its mass with occupants is 1000kg. It has strayed too close to a black hole having a mass 100 times that of the sun. If the nose of the spacecraft points toward the center of the black hole, and if the distance between the nose of the spacecraft and the black hole's center is 10km (a) determine the total force on the spacecraft. (b) What is the difference in the force per kilogram of mass felt by the occupants in the nose of the ship versus those in the rear of the ship farthest from the black hole?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON