A taxi company is trying to decide whether to purchase brand A or brand B tires for its fleet of taxis. To estimate the difference in the two brands, an experiment is conducted using 12 of each brand. The tires are run until they wear out. The results are given in the table below. Compute a 99% confidence interval for μA - HB assuming the populations to be approximately normally distributed. You may not assume that the variances are equal. Brand A x₁ = 35,100 kilometers X2 37,200 kilometers Brand B S₁ = 4800 kilometers $2 = 6100 kilometers Click here to view page 1 of the table of critical values of the t-distribution. Click here to view page 2 of the table of critical values of the t-distribution. The confidence interval is

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
Critical Values of the t-Distribution
Critical Values of the t-Distribution
a
a
0.40
0.30
0.20
0.15
0.10
0.05
0.025
0.02
0.015
0.01
0.0075
0.005
0.0025
0.0005
1
0.325
0.727
1.376
1.963
3.078
6.314
12.706
1
15.894
21.205
31.821
42.433
63.656
127.321
636.578
2
0.289
0.617
1.061
1.386
1.886
2.920
4.303
2
4.849
5.643
6.965
8.073
9.925
14.089
31.600
3
0.277
0.584
0.978
1.250
1.638
2.353
3.182
3
3.482
3.896
4.541
5.047
5.841
7.453
12.924
4
0.271
0.569
0.941
1.190
1.533
2.132
2.776
4
2.999
3.298
3.747
4.088
4.604
5.598
8.610
5
0.267
0.559
0.920
1.156
1.476
2.015
2.571
5
2.757
3.003
3.365
3.634
4.032
4.773
6.869
в
0.265
0.553
0.906
1.134
1.440
1.943
2.447
6
2.612
2.829
3.143
3.372
3.707
4.317
5.959
7
0.263
0.549
0.896
1.119
1.415
1.895
2.365
7
2.517
2.715
2.998
3.203
3.499
4.029
5.408
8
0.262
0.546
0.889
1.108
1.397
1.860
2.306
8
2.449
2.634
2.896
3.085
3.355
3.833
5.041
9
0.261
0.543
0.883
1.100
1.383
1.833
2.262
9
2.398
2.574
2.821
2.998
3.250
3.690
4.781
10
0.260
0.542
0.879
1.093
1.372
1.812
2.228
10
2.359
2.527
2.764
2.932
3.169
3.581
4.587
11
0.260
0.540
0.876
1.088
1.363
1.796
2.201
11
2.328
2.491
2.718
2.879
3.106
3.497
4.437
12
0.259
0.539
0.873
1.083
1.356
1.782
2.179
12
2.303
2.461
2.681
2.836
3.055
3.428
4.318
13
0.259
0.538
0.870
1.079
1.350
1.771
2.160
13
2.282
2.436
2.650
2.801
3.012
3.372
4.221
14
0.258
0.537
0.868
1.076
1.345
1.761
2.145
14
2.264
2.415
2.624
2.771
2.977
3.326
4.140
15
0.258
0.536
0.866
1.074
1.341
1.753
2.131
15
2.249
2.397
2.602
2.746
2.947
3.286
4.073
16
0.258
0.535
0.865
1.071
1.337
1.746
2.120
16
2.235
2.382
2.583
2.724
2.921
3.252
4.015
17
0.257
0.534
0.863
1.069
1.333
1.740
2.110
17
2.224
2.368
2.567
2.706
2.898
3.222
3.965
18
0.257
0.534
0.862
1.067
1.330
1.734
2.101
18
2.214
2.356
2.552
2.689
2.878
3.197
3.922
19
0.257
0.533
0.861
1.066
1.328
1.729
2.093
2.205
2.346
2.539
2.674
2.861
3.174
3.883
20
0.257
0.533
0.860
1.064
1.325
1.725
2.086
20
2.197
2.336
2.528
2.661
2.845
3.153
3.850
21
0.257
0.532
0.859
1.063
1.323
1.721
2.080
21
2.189
2.328
2.518
2.649
2.831
3.135
3.819
22
0.256
0.532
0.858
1.061
1.321
1.717
2.074
22
2.183
2.320
2.508
2.639
2.819
3.119
3.792
23
0.256
0.532
0.858
1.060
1.319
1.714
2.069
23
2.177
2.313
2.500
2.629
2.807
3.104
3.768
24
0.256
0.531
0.857
1.059
1.318
1.711
2.064
24
2.172
2.307
2.492
2.620
2.797
3.091
3.745
25
0.256
0.531
0.856
1.058
1.316
1.708
2.060
25
2.167
2.301
2.485
2.612
2.787
3.078
3.725
26
0.256
0.531
0.856
1.058
1.315
1.706
2.056
27
0.256
0.531
0.855
1.057
1.314
1.703
2.052
28
0.256
0.530
0.855
1.056
1.313
1.701
2.048
-
29
0.256
0.530
0.854
1.055
1.311
1.699
2.045
30
0.256
0.530
0.854
1.055
1.310
1.697
2.042
40
0.255
0.529
0.851
1.050
1.303
1.684
2.021
60
0.254
0.527
0.848
1.045
1.296
1.671
2.000
120
0.254
0.526
0.845
1.041
1.289
1.658
1.980
8"
0.253
0.524
0.842
1.036
1.282
1.645
1.960
e
0.40
0.30
0.20
0.15
0.10
- <>
120
888 988
26
2.162
2.296
2.479
2.605
2.779
3.067
3.707
27
2.158
2.291
2.473
2.598
2.771
3.057
3.689
28
2.154
2.286
2.467
2.592
2.763
3.047
3.674
2.150
2.282
2.462
2.586
2.756
3.038
3.660
30
2.147
2.278
2.457
2.581
2.750
3.030
3.646
40
2.123
2.250
2.423
2.542
2.704
2.971
3.551
60
2.099
2.223
2.390
2.504
2.660
2.915
3.460
2.076
2.196
2.358
2.468
2.617
2.860
3.373
2.054
2.170
2.326
2.432
2.576
2.807
3.290
0.05
0.025
0.02
0.015
0.01
0.0075
0.005
0.0025
0.0005
a
A
a
C
Transcribed Image Text:Critical Values of the t-Distribution Critical Values of the t-Distribution a a 0.40 0.30 0.20 0.15 0.10 0.05 0.025 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005 1 0.325 0.727 1.376 1.963 3.078 6.314 12.706 1 15.894 21.205 31.821 42.433 63.656 127.321 636.578 2 0.289 0.617 1.061 1.386 1.886 2.920 4.303 2 4.849 5.643 6.965 8.073 9.925 14.089 31.600 3 0.277 0.584 0.978 1.250 1.638 2.353 3.182 3 3.482 3.896 4.541 5.047 5.841 7.453 12.924 4 0.271 0.569 0.941 1.190 1.533 2.132 2.776 4 2.999 3.298 3.747 4.088 4.604 5.598 8.610 5 0.267 0.559 0.920 1.156 1.476 2.015 2.571 5 2.757 3.003 3.365 3.634 4.032 4.773 6.869 в 0.265 0.553 0.906 1.134 1.440 1.943 2.447 6 2.612 2.829 3.143 3.372 3.707 4.317 5.959 7 0.263 0.549 0.896 1.119 1.415 1.895 2.365 7 2.517 2.715 2.998 3.203 3.499 4.029 5.408 8 0.262 0.546 0.889 1.108 1.397 1.860 2.306 8 2.449 2.634 2.896 3.085 3.355 3.833 5.041 9 0.261 0.543 0.883 1.100 1.383 1.833 2.262 9 2.398 2.574 2.821 2.998 3.250 3.690 4.781 10 0.260 0.542 0.879 1.093 1.372 1.812 2.228 10 2.359 2.527 2.764 2.932 3.169 3.581 4.587 11 0.260 0.540 0.876 1.088 1.363 1.796 2.201 11 2.328 2.491 2.718 2.879 3.106 3.497 4.437 12 0.259 0.539 0.873 1.083 1.356 1.782 2.179 12 2.303 2.461 2.681 2.836 3.055 3.428 4.318 13 0.259 0.538 0.870 1.079 1.350 1.771 2.160 13 2.282 2.436 2.650 2.801 3.012 3.372 4.221 14 0.258 0.537 0.868 1.076 1.345 1.761 2.145 14 2.264 2.415 2.624 2.771 2.977 3.326 4.140 15 0.258 0.536 0.866 1.074 1.341 1.753 2.131 15 2.249 2.397 2.602 2.746 2.947 3.286 4.073 16 0.258 0.535 0.865 1.071 1.337 1.746 2.120 16 2.235 2.382 2.583 2.724 2.921 3.252 4.015 17 0.257 0.534 0.863 1.069 1.333 1.740 2.110 17 2.224 2.368 2.567 2.706 2.898 3.222 3.965 18 0.257 0.534 0.862 1.067 1.330 1.734 2.101 18 2.214 2.356 2.552 2.689 2.878 3.197 3.922 19 0.257 0.533 0.861 1.066 1.328 1.729 2.093 2.205 2.346 2.539 2.674 2.861 3.174 3.883 20 0.257 0.533 0.860 1.064 1.325 1.725 2.086 20 2.197 2.336 2.528 2.661 2.845 3.153 3.850 21 0.257 0.532 0.859 1.063 1.323 1.721 2.080 21 2.189 2.328 2.518 2.649 2.831 3.135 3.819 22 0.256 0.532 0.858 1.061 1.321 1.717 2.074 22 2.183 2.320 2.508 2.639 2.819 3.119 3.792 23 0.256 0.532 0.858 1.060 1.319 1.714 2.069 23 2.177 2.313 2.500 2.629 2.807 3.104 3.768 24 0.256 0.531 0.857 1.059 1.318 1.711 2.064 24 2.172 2.307 2.492 2.620 2.797 3.091 3.745 25 0.256 0.531 0.856 1.058 1.316 1.708 2.060 25 2.167 2.301 2.485 2.612 2.787 3.078 3.725 26 0.256 0.531 0.856 1.058 1.315 1.706 2.056 27 0.256 0.531 0.855 1.057 1.314 1.703 2.052 28 0.256 0.530 0.855 1.056 1.313 1.701 2.048 - 29 0.256 0.530 0.854 1.055 1.311 1.699 2.045 30 0.256 0.530 0.854 1.055 1.310 1.697 2.042 40 0.255 0.529 0.851 1.050 1.303 1.684 2.021 60 0.254 0.527 0.848 1.045 1.296 1.671 2.000 120 0.254 0.526 0.845 1.041 1.289 1.658 1.980 8" 0.253 0.524 0.842 1.036 1.282 1.645 1.960 e 0.40 0.30 0.20 0.15 0.10 - <> 120 888 988 26 2.162 2.296 2.479 2.605 2.779 3.067 3.707 27 2.158 2.291 2.473 2.598 2.771 3.057 3.689 28 2.154 2.286 2.467 2.592 2.763 3.047 3.674 2.150 2.282 2.462 2.586 2.756 3.038 3.660 30 2.147 2.278 2.457 2.581 2.750 3.030 3.646 40 2.123 2.250 2.423 2.542 2.704 2.971 3.551 60 2.099 2.223 2.390 2.504 2.660 2.915 3.460 2.076 2.196 2.358 2.468 2.617 2.860 3.373 2.054 2.170 2.326 2.432 2.576 2.807 3.290 0.05 0.025 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005 a A a C
A taxi company is trying to decide whether to purchase brand A or brand B tires for its fleet of taxis. To estimate the
difference in the two brands, an experiment is conducted using 12 of each brand. The tires are run until they wear out.
The results are given in the table below. Compute a 99% confidence interval for μд- μ assuming the populations to
be approximately normally distributed. You may not assume that the variances are equal.
Brand A
X₁ = 35,100 kilometers
X2 37,200 kilometers
Brand B
S₁ = 4800 kilometers
$2 = 6100 kilometers
Click here to view page 1 of the table of critical values of the t-distribution.
Click here to view page 2 of the table of critical values of the t-distribution.
The confidence interval is
<HA HB
(Round to the nearest integer as needed.)
Transcribed Image Text:A taxi company is trying to decide whether to purchase brand A or brand B tires for its fleet of taxis. To estimate the difference in the two brands, an experiment is conducted using 12 of each brand. The tires are run until they wear out. The results are given in the table below. Compute a 99% confidence interval for μд- μ assuming the populations to be approximately normally distributed. You may not assume that the variances are equal. Brand A X₁ = 35,100 kilometers X2 37,200 kilometers Brand B S₁ = 4800 kilometers $2 = 6100 kilometers Click here to view page 1 of the table of critical values of the t-distribution. Click here to view page 2 of the table of critical values of the t-distribution. The confidence interval is <HA HB (Round to the nearest integer as needed.)
Expert Solution
steps

Step by step

Solved in 3 steps with 20 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman