Concept explainers
A study of 420,016 cell phone users found that 130 of them developed cancer of the brain or nervous system. Prior to this study of cell phone use, the rate of such cancer was found to be 0.0318% for those not using cell phones. Complete parts (a) and (b)
a)use the sample data to construct a 95% confidence
____% < p < ____%
b)do cell phone users appear to have a rate of cancer of the brain or nervous system that is different from the rate of such cancer among those not using cell phones. Why or why not?
a) Yes, because 0.0318% is not included in the confidence interval
b) Yes, because 0.0318% is included in the confidence interval
c) No, because 0.0318% is not included in the confidence interval
d) No, because 0.0318% is included in the confidence interval
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
- Suppose that we are interested in comparing the academic success of college students who belong to fraternal organizations and the academic success of those who do not belong to fraternal organizations. Random samples of size 40 are taken from each population where the variances and standard deviations are known. Sample Size Mean GPA Variance (2) 2.03 2.21 Fraternity member (f): 40 Nonmembers (n): 40 .46 .35 Construct a 96% confidence interval estimate for the difference between the mean GPAS (uf- un). Interpret this interval estimate. What can you conclude about the mean GPAs of the two groups?arrow_forwardConsider a sample data with x=25 and s=2. Compute a chebyshev’s interval for which at least 89% of the data will lie?arrow_forwardA hypertensions trial is mounted and 12 participants are randomly assigned to receive either a new medication or a placebo. Each participant takes assigned medication and their systolic blood pressure (SBP) is recorded after 6 months on the assigned medication the data are shown in table 7-9 is there a difference in the mean SBP between treatment? Run the appropriate test at a =0.05arrow_forward
- Suppose you work for the Department of Environment and National Resources (DENR). You want to estimate, with 95% confidence, the mean length of all tilapia in a fish hatchery pond. You take a random sample of 10 tilapia and determine the average length is 10.5 inches and the sample standard deviation is 2.9 inches. Construct a confidence interval for this sample and interpret the result.arrow_forwardThe mean potassium content of a popular sports drink is listed as 132 mg in a 32-oz bottle. Analysis of 24 bottles indicates a sample mean of 131.2 mg. (a) State the hypotheses for a two-tailed test of the claimed potassium content.. a. Ho: μ= 132 mg vs. H₁: b. He: ≤132 mg vs. H₁: c. He: ≥132 mg vs. H₁: Oa Ob Oc (b) Assuming a known standard deviation of 2.1 mg, calculate the z test statistic to test the manufacturer's claim. (Round your answer to 2 decimal places. A negative value should be indicated by a minus sign.) Test statistic 132 mg >132 mg <132 mg (c) At the 2 percent level of significance (a = .02) does the sample contradict the manufacturer's claim? Decision Rule: Reject Hoarrow_forwardResearchers examined the bill color (in hue degree) of male and female zebra finches. Here are the summary statistics from the study. Sex N Mean Standard deviation Males 59 2.91 1.46 Females 60 7.42 2.48 How different are male and female zebra finches in bill color? The margin of error for a 95% confidence interval for the difference in mean bill color μF – μM (in hue degree) isarrow_forward
- 2. A common claim is that garlic lowers cholesterol levels. In a test of the effectiveness of garlic, 49 subjects were treated with doses of raw garlic, and their cholesterol levels were measured before and after the treatment. The changes in their levels of LDL cholesterol have a mean of 0.4 and a standard deviation of 21. Use the sample n = 49 to construct a 95% confidence interval estimate of the mean net change in LDL cholesterol after the garlic treatment. n=49₁ x=0,4₁ 5=21₁ CL = 95%, df=n-1 df=49-1=48arrow_forwardA telephone poll of 500 adult Americans was reported in an issue of Time Magazine. One of the questions asked was “What is the main problem facing the country?” Thirty percent answered “crime”. We are interested in the population proportion of adult Americans who feel that crime is the main problem. Define the random variables X and P’ in words. Which distribution should be used for this problem? Explain your choice. Construct a 97% confidence interval for the population proportion of adult Americans who feel that crime is the main problem. i. State the confidence interval, ii. Sketch the graph, iii. Calculate the error bound 4. Suppose we want to lower the sampling error. What is one way to accomplish that?arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman