eport states that adults 18- to 24- years-old send and receive 128 texts every day. Suppose we take a sample of 25- to 34- year-olds to see if their mean number of daily texts differs from the mean for 18- to 24- year-olds. (a) State the null and alternative hypotheses we should use to test whether the population mean daily number of texts for 25- to 34-ye

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
A report states that adults 18- to 24- years-old send and receive 128 texts every day. Suppose we take a sample of 25- to 34- year-olds to see if their mean number of daily texts differs from the mean for 18- to 24- year-olds.
(a)
State the null and alternative hypotheses we should use to test whether the population mean daily number of texts for 25- to 34-year-olds differs from the population daily mean number of texts for 18- to 24-year-olds. (Enter != for ≠ as needed.)
H0:
μ =128
 
 
Ha:
μ !=128
 
 
(b)
Suppose a sample of thirty 25- to 34-year-olds showed a sample mean of 118.4 texts per day. Assume a population standard deviation of 33.17 texts per day.
Compute the p-value. (Round your answer to four decimal places.)
p-value = 
(c)
With 
? = 0.05
 as the level of significance, what is your conclusion?
Do not reject H0. We cannot conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.Reject H0. We can conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.    Do not reject H0. We can conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.Reject H0. We cannot conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.
(d)
Repeat the preceding hypothesis test using the critical value approach.
State the null and alternative hypotheses. (Enter != for ≠ as needed.)
H0:
μ = 128
 
 
Ha:
μ !=128
 
 
Find the value of the test statistic. (Round your answer to two decimal places.)
 
State the critical values for the rejection rule. (Use ? = 0.05. Round your answer to two decimal places. If the test is one-tailed, enter NONE for the unused tail.)
test statistic≤test statistic≥
State your conclusion.
Do not reject H0. We cannot conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.Reject H0. We can conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.    Do not reject H0. We can conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.Reject H0. We cannot conclude that the population mean daily texts for 25- to 34-year-olds differs significantly from the population mean of 128 daily texts for 18- 24-year-olds.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Means
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman