College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle having mass m = 2.80E-4 kg carries a negative charge q= −1.70E-6 C . The particle is given an initial velocity in the −y direction (downward), as shown in the figure, of v = 7.84E2 m/s. Everywhere in space there is a uniform constant magnetic field B = 0.340 T pointing in the +z direction, which is out of the plane of the page. What is the speed of the particle after 7 periods of the cyclotron motion (in m/s)?arrow_forwardProblem 10: A magnetic needle with magnetic moment μ-0.065 Am2 is placed in a uniform magnetic field B0.65 T as shown in the figure. The angle between the direction of the magnetic moment and the direction of the magnetic field is θ 250 Randomized Variables μ= 0.065 Arn B- 0.65T θ 250 Δ Part (a) Express the potential energy U in terms oft, B, θ. | cos(p) sin(p) | cos(α) sin(a) cos(0) sin(0) ( HOMI 4 5 6 BACKSPACE CLEAR Submit Hint I give up! Hints: 1% deduction per hint. Hints remaining: 1 Feedback: 1% deduction per feedback. Part (b) Calculate the numerical value of U in J. Part (c) If θ can be changed, which value has the minimum potential energy? Part (d) If θ can be changed, which value has the maximum potential energy in degrees? Δ Part (e) Ignore the mass of the needle, express the work needed to change the angle from θ to α in terms oftı, B, θ, α Part (f) If α-1500, calculate the numerical value of the work in J.arrow_forwardA rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails (see figure below) that are d = 12.0 cm apart and L = 45.0 cm long. The rod carries a current of I = 36.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.400 T is directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as it leaves the rails? (Assume that the rod is of uniform density.) L 2.07 X You appear to have omitted the translational kinetic energy of the rod. m/sarrow_forward
- Anilarrow_forwardA magnetic dipole with a dipole moment of magnitude 0.017 J/T is released from rest in a uniform magnetic field of magnitude 62 mT. The rotation of the dipole due to the magnetic force on it is unimpeded. When the dipole rotates through the orientation where its dipole moment is aligned with the magnetic field, its kinetic energy is 9.2 ⋅10−49.2 ⋅10-4 J. What is the initial angle between the dipole moment and the magnetic field?arrow_forwardA loop of wire with radius r=0.075m is placed in a region of uniform magnetic field with magnitude B. As shown in the figure, the field direction is perpendicular to the plane of the loop. The magnitude of the magnetic field changes at a constant rate from B1=0.55T to B2=1.5T in time Δt=5.5s. The resistance of the wire is R=6Ω A. Calculate, in Tesla squared meters, the magnitude of the change in the magnetic flux. B. Calculate, in volts, the average EMF induced in the loop. C. Calculate, in amperes, current induced in the loop.arrow_forward
- A student makes a short electromagnet by winding 530 turns of wire around a wooden cylinder of diameter d = 4.4 cm. The coil is connected to a battery producing a current of 4.1 A in the wire. (a) What is the magnitude of the magnetic dipole moment of this device? (b) At what axial distance z >> d will the magnetic field have the magnitude 6.7 µT (approximately one-tenth that of Earth's magnetic field)?arrow_forwardA magnetic dipole with a dipole moment of magnitude 0.0306 J/T is released from rest in a uniform magnetic field of magnitude 57.6 mT. The rotation of the dipole due to the magnetic force on it is unimpeded. When the dipole rotates through the orientation where its dipole moment is aligned with the magnetic field, its kinetic energy is 0.573 mJ. (a) What is the initial angle between the dipole moment and the magnetic field? (b) What is the angle when the dipole is next (momentarily) at rest?arrow_forwardA circular coil of 216 turns has a radius of 2.29 cm. (a) Calculate the current that results in a magnetic dipole moment of magnitude 2.64 A·m2. (b) Find the maximum magnitude of the torque that the coil, carrying this current, can experience in a uniform 52.5 mT magnetic field. (a) Number Units (b) Number i Unitsarrow_forward
- A circular wire loop of radius 16.4 cm carries a current of 3.19 A. It is placed so that the normal to its plane makes an angle of 39.1° with a uniform magnetic field of magnitude 11.2 T. (a) Calculate the magnitude of the magnetic dipole moment of the loop in amperes- square meters. (b) What is the magnitude of the torque acting on the loop? (a) Number i (b) Number i Units Units <arrow_forwardA current of strength I=1A flows through the copper wire. The wire consists of two straight parts between points A(1,2,3)cm and B(1,3,2)cm and between points B and C(2,1,3)cm. The wire is located in a homogeneous magnetic field of induction B=1T. a) If the total force on the wire is 0, calculate the direction of the magnetic field. b) If we rotate the direction of the magnetic field so that the total force on the wire is the largest, calculate the maximum possible force on the wire.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON