A steel pipe 150mm external diameter conveys steam at a temperature of 260°C and is covered by two layers of lagging, each 50mm thick. The thermal conductivity coefficient of the inside layer of lagging is 0.0865W/mK while that of the outside layer is 0.0952W/mK. The outside surface temperature of the steel pipe can be taken as being the same temperature of the steam. The ambient temperature is 27°C and the heat transfer coefficient of the outside surface is 15W/m²K. Calculate: 3.1 the heat lost/hr for a pipe length of 30m;

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.37P
icon
Related questions
Question
QUESTION 3
A steel pipe 150mm external diameter conveys steam at a
temperature of 260°C and is covered by two layers of lagging,
each 50mm thick. The thermal conductivity coefficient of the
inside layer of lagging is 0.0865W/mK while that of the outside
layer is 0.0952W/mK. The outside surface temperature of the
steel pipe can be taken as being the same temperature of the
steam. The ambient temperature is 27°C and the heat transfer
coefficient of the outside surface is 15W/m2K.
Calculate:
3.1
the heat lost/hr for a pipe length of 30m;
Transcribed Image Text:QUESTION 3 A steel pipe 150mm external diameter conveys steam at a temperature of 260°C and is covered by two layers of lagging, each 50mm thick. The thermal conductivity coefficient of the inside layer of lagging is 0.0865W/mK while that of the outside layer is 0.0952W/mK. The outside surface temperature of the steel pipe can be taken as being the same temperature of the steam. The ambient temperature is 27°C and the heat transfer coefficient of the outside surface is 15W/m2K. Calculate: 3.1 the heat lost/hr for a pipe length of 30m;
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning