A steel cable is used to support an elevator cage at the bottom of a 2400-ft-deep mineshaft. A uniform normal strain of 300 μin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 2400 ft and d = 200 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 620 uin./in., determine (a) the strain in the cable at a depth of 200 ft. (b) the total elongation of the cable. Drum Answers: (a) Cable + ε = i Elevator cage D X uin./in.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A steel cable is used to support an elevator cage at the bottom of a 2400-ft-deep mineshaft. A uniform normal strain of 300 μin./in. is
produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is
proportional to the length of the cable below the point. Assume D = 2400 ft and d = 200 ft. If the total normal strain in the cable at the
cable drum (upper end of the cable) is 620 uin./in., determine
(a) the strain in the cable at a depth of 200 ft.
(b) the total elongation of the cable.
Drum
Answers:
(a)
Cable
+
ε =
i
Elevator cage
D
X
uin./in.
Transcribed Image Text:A steel cable is used to support an elevator cage at the bottom of a 2400-ft-deep mineshaft. A uniform normal strain of 300 μin./in. is produced in the cable by the weight of the cage. At each point, the weight of the cable produces an additional normal strain that is proportional to the length of the cable below the point. Assume D = 2400 ft and d = 200 ft. If the total normal strain in the cable at the cable drum (upper end of the cable) is 620 uin./in., determine (a) the strain in the cable at a depth of 200 ft. (b) the total elongation of the cable. Drum Answers: (a) Cable + ε = i Elevator cage D X uin./in.
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Strain Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY