MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A statistics consulting center at a major university analyzed data on normal woodchucks for the university's veterinary school. The variables of interest were body weight in grams and heart weight in grams. It was desired to develop a linear regression equation in order to determine if there is a significant linear relationship between heart weight and total body weight. Use this information to answer the questions.
Determine the test statistic.
Body Weight Heart Weight
4050 11.1
2435 10.1
3135 15.8
5740 10.9
2555 10.7
3665 11.4
2035 13.4
4260 13.9
2990 11.5
4935 15.8
3690 10.1
2880 12.8
2760 10.6
2160 15.4
2360 14.8
2040 13.6
2055 12.9
2650 15.6
2665 13.8
4050 11.1
2435 10.1
3135 15.8
5740 10.9
2555 10.7
3665 11.4
2035 13.4
4260 13.9
2990 11.5
4935 15.8
3690 10.1
2880 12.8
2760 10.6
2160 15.4
2360 14.8
2040 13.6
2055 12.9
2650 15.6
2665 13.8
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, y = bo + bjx, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 47 49 50 51 58 Bone Density 360 353 336 333 310 Table Copy Data Step 1 of 6: Find the estimated slope. Round your answer to three decimal places.arrow_forwardThe table below gives the number of weeks of gestation and the birth weight (in pounds) for a sample of five randomly selected babies. Using this data, consider the equation of the regression line, y based on the number of weeks of gestation. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. bo + bjx, for predicting the birth weight of a baby Weeks of Gestation 33 35 37 39 40 Weight (in pounds) 5 6.8 7.9 8.5 9.3 Table Copy Data Step 5 of 6: Find the error prediction when x = 39. Round your answer to three decimal places.arrow_forwardThe table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age Bone Density48 35151 32056 31860 31169 310 Step 6 of 6: Find the value of the coefficient of determination. Round your answer to three decimal places.arrow_forward
- The Cadet is a popular model of sport utility vehicle, known for its relatively high resale value. The bivariate data given below were taken from a sample of sixteen Cadets, each bought new two years ago, and each sold used within the past month. For each Cadet in the sample, we have listed both the mileage x (in thousands of miles) that the Cadet had on its odometer at the time it was sold used and the price y (in thousands of dollars) at which the Cadet was sold used. With the aim of predicting the used selling price from the number of miles driven, we might examine the least-squares regression line, y=41.57 – 0.49.x. This line is shown in the scatter plot in Figure 1. Used selling price, Mileage, x (in thousands) (in thousands of dollars) 25.9 26.1 28.1 26.2 40- 21.1 31.4 24.0 27.5 35 27.2 30.9 38.7 21.4 30. 34.6 25.5 37.2 23.5 15.6 34.0 25- 23.8 28.0 20.9 30.9 20. 23.1 32.7 28.0 30.3 40 29.2 28.1 Figure 1 24.0 29.6 23.0 31.5 Send data to Excelarrow_forwardA large school district is reevaluating its teachers' salaries. They have decided to use regression analysis to predict mean teacher salaries at each elementary school. The researcher uses years of experience to predict salary. The resulting equation was: Where Y=salary and X=years of experience. The raw data is given in the table below, Salary $54,000.00 $42,140.00 $36,195.00 $45,000.00 $58,950.00 $56,890.00 $53,250.00 $49,800.00 $35,820.00 $74,390,00 $28,900.00 $38,690.00 $78,070.00 $64,205.00 $20,000.00 Years of experience 13 9 7 9 14 13 14 11 8 22 5 8 23 18 2 a) Use Excel to estimate the regression equation (copy and paste your output). What is the coefficient on experience? b) What is the correlation coefficient? c) What is the coefficient of determination, and how do you interpret it? d) Discuss the overall significance of the modelarrow_forwardThe table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 35 43 53 54 55 Bone Density 350 340 339 321 310 Table Step 6 of 6 : Find the value of the coefficient of determination. Round your answerarrow_forward
- The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, y = bo + bjx, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 35 50 54 61 66 Bone Density 354 353 350 334 332 Tab Copy Data Step 6 of 6: Find the value of the coefficient of determination. Round your answer to three decimal places. 田 Tables 國 Key Answer Keyboard Sho How to enter your answer (opens in new window) Previous step ar Submit An © 2022 Hawkes Learning tv APR 24 MacBook Proarrow_forwardThe datasetBody.xlsgives the percent of weight made up of body fat for 100 men as well as other variables such as Age, Weight (lb), Height (in), and circumference (cm) measurements for the Neck, Chest, Abdomen, Ankle, Biceps, and Wrist. We are interested in predicting body fat based on abdomen circumference. Find the equation of the regression line relating to body fat and abdomen circumference. Make a scatter-plot with a regression line. What body fat percent does the line predict for a person with an abdomen circumference of 110 cm? One of the men in the study had an abdomen circumference of 92.4 cm and a body fat of 22.5 percent. Find the residual that corresponds to this observation. Bodyfat Abdomen 32.3 115.6 22.5 92.4 22 86 12.3 85.2 20.5 95.6 22.6 100 28.7 103.1 21.3 89.6 29.9 110.3 21.3 100.5 29.9 100.5 20.4 98.9 16.9 90.3 14.7 83.3 10.8 73.7 26.7 94.9 11.3 86.7 18.1 87.5 8.8 82.8 11.8 83.3 11 83.6 14.9 87 31.9 108.5 17.3…arrow_forwardThe table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age Bone Density34 35745 34148 33160 32965 325 Step 3 of 6: Determine the value of the dependent variable yˆ at x=0.arrow_forward
- 10.99arrow_forwardThe table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age Bone Density34 35745 34148 33160 32965 325 Step 2 of 6: Find the estimated y-intercept. Round your answer to three decimal places.arrow_forwardFind the regression equation, letting overhead width be the predictor (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 2.3 cm. Can the prediction be correct? What is wrong with predicting the weight in this case? Use a significance level of 0.05. Overhead Width (cm) Weight (kg) 7.8 175 7.3 9.5 274 7.4 156 9.9 294 9.2 183 256 Click the icon to view the critical values of the Pearson correlation coefficient r. ..... The regression equation is y =+x. (Round to one decimal place as needed.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman