(a) Start by squaring both sides of the congruence 34 = 81 (mod 100) to prove that 38 = 61 (mod 100) and then prove that 3¹6 = 21 (mod 100). What does this tell you about the last two digits in the decimal repre- sentation of 316? (b) Use the two congruences in Part (24a) and laws of exponents to deter- mine r where 320 = r (mod 100) and r € Z with 0 < r < 100. What does this tell you about the last two digits in the decimal representation of 320? 158 @080 BY NC SA Chapter 3. Constructing and Writing Proofs in Mathematics (c) Determine the last two digits in the decimal representation of 3400 (d) Determine the last two digits in the decimal representation of 4804. Hint: One way is to determine the "mod 100 values” for 4², 44, 48, 416, 432, 464, and so on. Then use these values and laws of exponents to determine r, where 4804 = r (mod 100) and r € Z with 0 < r < 100. (e) Determine the last two digits in the decimal representation of 33356 (f) Determine the last two digits in the decimal representation of 7403
(a) Start by squaring both sides of the congruence 34 = 81 (mod 100) to prove that 38 = 61 (mod 100) and then prove that 3¹6 = 21 (mod 100). What does this tell you about the last two digits in the decimal repre- sentation of 316? (b) Use the two congruences in Part (24a) and laws of exponents to deter- mine r where 320 = r (mod 100) and r € Z with 0 < r < 100. What does this tell you about the last two digits in the decimal representation of 320? 158 @080 BY NC SA Chapter 3. Constructing and Writing Proofs in Mathematics (c) Determine the last two digits in the decimal representation of 3400 (d) Determine the last two digits in the decimal representation of 4804. Hint: One way is to determine the "mod 100 values” for 4², 44, 48, 416, 432, 464, and so on. Then use these values and laws of exponents to determine r, where 4804 = r (mod 100) and r € Z with 0 < r < 100. (e) Determine the last two digits in the decimal representation of 33356 (f) Determine the last two digits in the decimal representation of 7403
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,