A spring with a spring constant of k = 192 N/m is initially compressed by a block a distance d = 0.23 m. The block is on a horizontal surface with coefficient of kinetic friction μk, static friction μs, and has a mass of m = 7 kg. How large would the coefficient of static friction μs need to be to keep the block from moving? Recall that to keep the block from moving, the

Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Michael A. Seeds, Dana Backman
Chapter3: Cycles Of The Sun And Moon
Section: Chapter Questions
Problem 12RQ
icon
Related questions
Question

A spring with a spring constant of k = 192 N/m is initially compressed by a block a distance d = 0.23 m. The block is on a horizontal surface with coefficient of kinetic friction μk, static friction μs, and has a mass of m = 7 kg.

How large would the coefficient of static friction μs need to be to keep the block from moving? Recall that to keep the block from moving, the acceleration is zero. 

Assuming the block has just begun to move and the coefficient of kinetic friction is μk = 0.2, what is the block's acceleration in meters per square second? 

-Unstretched Length
www
y
it d
m
Otheexpertta.com
Transcribed Image Text:-Unstretched Length www y it d m Otheexpertta.com
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Horizons: Exploring the Universe (MindTap Course …
Horizons: Exploring the Universe (MindTap Course …
Physics
ISBN:
9781305960961
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University