A spherical gas container having an inner diameter of 5 m and a wall thickness of 24 mm is made of steel for which E = 200 GPa and v = 0.29. Knowing that the gage pressure in the container is increased from zero to 1.8 MPa, determine (a) the maximum normal stress in the container, (b) the corresponding increase in the diameter of the container. Hint: refer back to earlier notes for relationship between strain, Poisson's ratio, and stress in two directions

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A spherical gas container having an inner diameter of 5 m and a wall thickness of 24 mm is made of steel
for which E = 200 GPa and v = 0.29. Knowing that the gage pressure in the container is increased from zero
to 1.8 MPa, determine (a) the maximum normal stress in the container, (b) the corresponding increase in the
diameter of the container.
Hint: refer back to earlier notes for relationship between strain, Poisson's ratio, and stress in two directions
Sm
The unpressurized cylindrical storage tank shown has a 5-mm wall thickness
and is made of steel having a 400-MPa ultimate strength in tension.
Determine the maximum height h to which it can be filled with water if a
factor of safety of 4.0 is desired. (Density of water = 1000 kg/m³.)
14.5 m
Hint: recall pressure (p) due to a column of water is p = yh
Transcribed Image Text:A spherical gas container having an inner diameter of 5 m and a wall thickness of 24 mm is made of steel for which E = 200 GPa and v = 0.29. Knowing that the gage pressure in the container is increased from zero to 1.8 MPa, determine (a) the maximum normal stress in the container, (b) the corresponding increase in the diameter of the container. Hint: refer back to earlier notes for relationship between strain, Poisson's ratio, and stress in two directions Sm The unpressurized cylindrical storage tank shown has a 5-mm wall thickness and is made of steel having a 400-MPa ultimate strength in tension. Determine the maximum height h to which it can be filled with water if a factor of safety of 4.0 is desired. (Density of water = 1000 kg/m³.) 14.5 m Hint: recall pressure (p) due to a column of water is p = yh
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Pressure Vessels
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY