College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A solid cylinder has a 3.9 m long string wrapped around it. The free-end of the string is held and the solid cylinder is released thus unwinding the string as it falls. Find out how fast the solid cylinder will be going at the moment the string is completely unwound assuming no thermal energy is generated.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- A small ball is attached to one end of a spring that has an unstrained length of 0.222 m. The spring is held by the other end, and the ball is whirled around in a horizontal circle at a speed of 4.52 m/s. The spring remains nearly parallel to the ground during the motion and is observed to stretch by 0.0102 m. By how much would the spring stretch if it were attached to the ceiling and the ball allowed to hang straight down, motionless? Number i eTextbook and Media Units +arrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 0=0°. The spring's length at the state 2 is L2=4 m. _(kg-m²) (two decimal (9) The mass moment of inertial about the IC center is IIC=_ places) L₂ State 2 State 1arrow_forwardEngineers are designing a system by which a falling mass m imparts kinetic energy to a rotating uniform drum to which it is attached by thin, very light wire wrapped around the rim of the drum (the figure (Figure 1)). There is no appreciable friction in the axle of the drum, and everything starts from rest. This system is being tested on earth, but it is to be used on Mars, where the acceleration due to gravity is 3.71 m/s2. In the earth tests, when m is set to 13.0 kg and allowed to fall through 5.00 m, it gives 300.0 J of kinetic energy to the drum. If the system is operated on Mars, through what distance would the 13.0-kg mass have to fall to give the same amount of kinetic energy to the drum? How fast would the 13.0-kg mass be moving on Mars just as the drum gained 300.0 J of kinetic energy?arrow_forward
- A small ball is attached to one end of a spring that has an unstrained length of 0.185 m. The spring is held by the other end, and the ball is whirled around in a horizontal circle at a speed of 4.80 m/s. The spring remains nearly parallel to the ground during the motion and is observed to stretch by 0.0190 m. By how much would the spring stretch if it were attached to the ceiling and the ball allowed to hang straight down, motionless? Number Unitsarrow_forwardA 0.200-m uniform bar has a mass of 0.676 kg and is released from rest in the vertical position, as the drawing indicates. The spring is initially unstrained and has a spring constant of k = 28.0 N/m. Find the tangential speed with which end A strikes the horizontal surface. Number i Units 0.100 m Pivot (friction less) 0.100 m 0.100 marrow_forwardThe smooth hollow tube assembly rotates about a vertical axis with angular velocity ω=θ˙=3.8ω=θ˙=3.8 rad/s and ω˙=θ¨=−2.4ω˙=θ¨=-2.4 rad/s2. A small 0.23-kg slider P moves inside the horizontal tube portion under the control of the string which passes out the bottom of the assembly. If r=0.88r=0.88 m, r˙=−1.9r˙=-1.9 m/s, and r¨=3.8r¨=3.8 m/s2, determine the tension T in the string and the horizontal force Fθ exerted on the slider by the tube. T is positive in tension, and Fθ is positive if in the positive θ direction.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON