College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A satellite has a mass of 298 kg and is located at 1.97 ✕ 106 m above the surface of Earth.
(a) What is the potential energy associated with the satellite at this location?
J
(b) What is the magnitude of the gravitational force on the satellite?
N
J
(b) What is the magnitude of the gravitational force on the satellite?
N
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1-25. The gravitational forces exerted by the Sun on the planets are always directed toward the Sun and depend only on the distance r. This type of field is called a central force field. Find the potential energy at a distance r from a center of attraction when the force varies as 1/r. Set the potential energy equal to zero at infinity.arrow_forwardA 977-kg satellite orbits the Earth at a constant altitude of 101-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 205 km? 892.8 How is the total energy of an object in circular orbit related to the potential energy? MJ (b) What is the change in the system's kinetic energy? 178 Is the satellite moving faster or slower when it's orbit is at a higher altitude? MJ (c) What is the change in the system's potential energy? MJarrow_forwardConsider a satellite in a circular orbit above Earth’s surface. In Chapter we will learn that the force of gravity changes only the direction of motion of a satellite in circular motion (and keeps it in a circle); it does NOT change the satellite’s speed. Work done on the satellite by the gravitational force is zero. What is your explanation?arrow_forward
- 13.39 • CALC Consider the ring- shaped object in Fig. E13.39 D. A particle with mass m is placed a distance x from the center of the ring, along the line through the center of the ring and perpendicular to its plane. (a) Calculate the gravitational potential energy U of this system. Take the potential energy to be zero when the two objects are far apart. (b) Show that your answer to part (a) reduces to the expected result when x is much larger than the radius a of the ring. (c) Use F. = -dU/dx to find the magnitude and direction of the force on the particle (see Section 7.4 9). (d) Show that your answer to part (c) reduces to the expected result when x is much larger than a. (e) What are the values of U and F, when x = 0? Explain why these results make sense. Figure E13.39 т Marrow_forwardAarrow_forwardA 500 kg communication satellite is to be placed in geostationary orbit around the Earth. a)How high does it have to go to have the same period as the Earth? b)What is the gravitational potential energy of the satellite before going into orbit? c)What is the total energy of the satellite in geostationary orbit? d)What is the work that the rocket must do to place the satellite in geostationary orbit?arrow_forward
- please answer all the subpartsarrow_forwardA planet with a radius of 6.00 × 107 m has a gravitational field of magnitude 41.7 m/s2 at the surface. What is the escape speed from the planet?arrow_forwardA 260 g particle in a semi-spherical bowl of radius 0.6 m is released from rest at point A at the level of the center of the bowl, and the surface of the bowl is rough. The speed of the particle at B is 2 m/s. The acceleration of gravity is 9.8 m/s2 . a)What is its kinetic energy at B? b)What is the magnitude of the energy lost due to friction as the particle moves from A to B?arrow_forward
- A 800 kg roller coaster goes over the first hill with a speed of 17.0 m/s. If h = 58 m, determine the change in gravitational potential between A and B. Use g = 10 N/kg.arrow_forwardA spherically symmetric ball of mass m and radius R is centered at the origin. A thin rod has a mass M uniformly distributed along its length L and lies along the x-axis as shown in the figure below. Determine the gravitational potential energy of the system if U = 0 at x = ∞. y L M тarrow_forwardIn deep space, sphere A of mass 30 kg is located at the origin of an x axis and sphere B of mass 10 kg is located on the axis at x = 0.85 m. Sphere B is released from rest while sphere A is held at the origin. (a) What is the gravitational potential energy of the two-sphere system just as B is released? (b) What is the kinetic energy of B when it has moved 0.25 m toward A? Additional Materials eBook Powers of Tenarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON