College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A 500 kg communication satellite is to be placed in geostationary orbit around the Earth.
a)How high does it have to go to have the same period as the Earth?
b)What is the gravitational potential energy of the satellite before going into orbit?
c)What is the total energy of the satellite in geostationary orbit?
d)What is the work that the rocket must do to place the satellite in geostationary orbit?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At NASA's Zero Gravity Research Facility in Cleveland, Ohio, experimental payloads fall freely from rest in an evacuated vertical shaft through a distance of 132 m. (a) If a particular payload has a mass of 15 kg, what is its potential energy relative to the bottom of the shaft? J(b) How fast will the payload be traveling when it reaches the bottom of the shaft? m/sConvert your answer to mph for a comparison to highway speeds. mpharrow_forwardA 977-kg satellite orbits the Earth at a constant altitude of 101-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 205 km? 892.8 How is the total energy of an object in circular orbit related to the potential energy? MJ (b) What is the change in the system's kinetic energy? 178 Is the satellite moving faster or slower when it's orbit is at a higher altitude? MJ (c) What is the change in the system's potential energy? MJarrow_forwardNeed quickarrow_forward
- 1) A box of mass m= 50kg which is sliding on a horizontal rough surface and momentarily comes to stop after compressing the spring by a distance of 120 mm. The spring has a spring constant k = 20KN/m and is initially in its equilibrium state. The initial speed of the box is 3.0m/s. a) What is the work done by the spring as the box is brought to a stop? b) Write an expression for the work done by friction during the stopping of the box (in terms of the coefficient of kinetic friction). c) Determine the coefficient of friction between the box and the surface. v=3.0 ms 600 mm 600 mm 120 mm-arrow_forward4) A small box of mass 0.021 kg compresses a spring (k = 420 N/m) a distance of 0.070 m and is released. It travels on a horizontal, frictionless track and then enters a vertical loop. The loop has a radius of 0.24 m. What is the speed of the block when it reaches the top of the loop?arrow_forwardassume the object has a mass of 0.55kg. calculate the gravitational potential energy and kinetic energy of the object. add the values to get the total energy. don't forget to label the units. time (s) 0.05 height (m) 4.99 speed (M/s) 0.5arrow_forward
- Q10 The planet Saturn has a mass of 5.70 x 1026 kg and a diameter of 139820 km. A satellite in orbit around Saturn has a mass of 400 kg and is in orbit 1600 km above the surface of the planet. What is the gravitational potential energy of the satellite? (A) -1.98 x 10'l J (C) -2.13 x 10l J (B) -2.07 x 10!" j (D) 2.13 x 10"Jarrow_forwardA spherically symmetric ball of mass m and radius R is centered at the origin. A thin rod has a mass M uniformly distributed along its length L and lies along the x-axis as shown in the figure below. Determine the gravitational potential energy of the system if U = 0 at x = ∞. y L M тarrow_forward15. A 550-kg satellite projected upward from Earth's surface reaches a maximum height of 6000 km. Find a) its change in gravitational potential energy. b) its initial kinetic energy.arrow_forward
- In deep space, sphere A of mass 30 kg is located at the origin of an x axis and sphere B of mass 10 kg is located on the axis at x = 0.85 m. Sphere B is released from rest while sphere A is held at the origin. (a) What is the gravitational potential energy of the two-sphere system just as B is released? (b) What is the kinetic energy of B when it has moved 0.25 m toward A? Additional Materials eBook Powers of Tenarrow_forwardA camera weighing 15 N falls from a small drone hovering 35 m overhead and enters free fall. What is the gravitational potential energy change of the camera from the drone to the ground if you take a reference point of a. the ground being zero gravitational potential energy? APE b. The drone being zero gravitational potential energy? APE What is the gravitational potential energy of the camera (with the reference point of zero gravitational potential energy taken to be a second person looking out of a building 30 m from the ground) c. before it falls from the drone? PE=| d. after the camera lands on the ground? PE Submit Questionarrow_forwardA 2.35-kg object initially at rest has a gravitational potential energy of 74.6 J. Determine the speed of the object when it has moved under the influence of gravity to a location where its gravitational potential energy is 50.0 J. m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON