College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He can
legally pass the ball to a teammate as long as the ball’s velocity relative
to the field does not have a positive x component. Suppose the
player runs at speed 4.0 m/s relative to the field while he passes the
ball with velocity relative to himself. If has magnitude
6.0 m/s, what is the smallest angle it can have for the pass to be legal?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vo=18.5 m/s. the cliff is h=49.0 m above a flat, horizontal beach. what are the coordinates of the initial position of the stone and the components of the initial velocity?arrow_forwardProblem 1: A car is moving on a straight road in a fixed direction at a constant speed of v = 31 km/h with respect to the road. You wish to state the kinematic vectors of the motion of the car by using a Cartesian coordinate system whose positive x-axis is pointed in the direction of the motion of the car and the origin is fixed at some point on the road. Part (a) What is the expression for the velocity of the car, using the speed v and the unit vectors i, j, and k?arrow_forwardOne of the tasks of the Mighty Hercules was to protect the town of Nemea from a lion. One day Hercules sees the lion 320 feet away. He strings his bow and lets an arrow fly. The arrow leaves his bow travelling at 210 feet per second from a height of 6 feet. He wants to hit the lion in the neck above the shoulders which is 4 feet off of the ground. determine the launch angle that will hit the Lion. Find the right angle.arrow_forward
- A space vehicle is coasting at a constant velocity of 20.5 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.351 m/s2 in the +x direction. After 33.2 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA space vehicle is coasting at a constant velocity of 17.0 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.291 m/s2 in the +x direction. After 54.3 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA space vehicle is coasting at a constant velocity of 19.3 m/s in the +y direction relative to a space station. The pilot of the vehicle fires aRCS (reaction control system) thruster, which causes it to accelerate at 0.337 m/2 in the + direction. After 59.8 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forward
- Chinook salmon can cover more distance in less time by periodically making jumps out of the water. Suppose a salmon swimming in still water jumps out of the water with velocity 6.03 m/s at 40.6° above the horizontal, re-enters the water a distance L upstream, and then swims the same distance L underwater in a straight, horizontal line with velocity 2.92 m/s before jumping out again. Where L=3.67 m; t1= 0.801 sec this is a time when fish are over the water; t2= 1.256 sec; Ttotal =2.057 sec; the average horizontal velocity is 3.57 m/s. Consider the interval of time necessary to travel 2L. How is this reduced by the combination of jumping and swimming compared with just swimming at the constant speed of 2.92 m/s? Express the reduction as a percentage.arrow_forwardAn object has an initial velocity of 29.0 m/s at 95.0° and an acceleration of 1.90 m/s2 at 200.0°. Assume that all angles are measured with respect to the positive x-axis. (a) Write the initial velocity vector and the acceleration vector in unit vector notation. (b) If the object maintains this acceleration for 12.0 seconds, determine the average velocity vector over the time interval. Express your answer in your unit vector notation.arrow_forwardFor safety reasons, park rangers decide to start an avalanche on a mountain slope. They fire an artillery shell at an angle of 520 above the horizontal with an initial speed of 295 m/s. Thirty seconds later they see the explosion. What is the x coordinates of the shell where it explodes, relative to the firing point?arrow_forward
- -b+√b²-4ac 2a x = x₂ + V₁xt + ²axt², V₁₁x = V₁x + axt, (v₁₁x)² = (v₁x)² + 2axx, t == у = V₁ + V₁¸yt + ² α¸t², Vf₁y = V₁y+āÿt, (Vƒ‚y)² = (v₁y)² + 2a,ÿarrow_forwardA snowmobile is originally at the point with position vector 30.5 m at 95.0° counterclockwise from the x-axis, moving with velocity 4.89 m/s at 40.0°. It moves with a constant acceleration 1.72 m/s2 at 200°. After 5.00 s have elapsed, find the following. (Express your answers in vector form.) (a) its velocity vector. (b) its position vector.arrow_forwardYou are on a train that is traveling at 3.0 m/s along a level straight track. Very near and parallel to the track is a wall that slopes upward at a 12° angle with the horizontal. As you face the window (0.777 m high, 2.26 m wide) in your compartment, the train is moving to the left, as the drawing indicates. The top edge of the wall first appears at window corner A and eventually disappears at window corner B. How much time, in seconds, passes between appearance and disappearance of the upper edge of the wall? A B A 3.0 m/s 12⁰ Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON