A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000 N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory. Assume yield strength as 400 MPa for plain carbon steel.

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter3: Torsion
Section: Chapter Questions
Problem 3.7.8P: A tubular shaft being designed for use on a construction site must transmit 120 kW at 1,75 Hz, The...
icon
Related questions
Question
None
B)
A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of
5000 N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the
factor of safety available based on 1. Maximum normal stress theory; and 2. Maximum shear
stress theory. Assume yield strength as 400 MPa for plain carbon steel.
Transcribed Image Text:B) A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000 N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory. Assume yield strength as 400 MPa for plain carbon steel.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Buckling of Columns
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning