A rod of semiconducting material of lenght L=3 m and cross-sectional area A=4.5 mm^2 lies along the x-axis between x=0 and x=L. The material obeys ohm's law, and resistivity varies along the rod according to p=p0 (1-(x^2/L^2)) where p0= 4.10^-4 ohm.m. The end of the rod x=0 is at a potential V0=30V greater than the x=L. A) what is the total resistance, in units of ohm, of the rod? B) what is the current, in units of miliamperes, in the rod? C) what is the electric potential, in units of Volt, in the rod at x=L/2?
A rod of semiconducting material of lenght L=3 m and cross-sectional area A=4.5 mm^2 lies along the x-axis between x=0 and x=L. The material obeys ohm's law, and resistivity varies along the rod according to p=p0 (1-(x^2/L^2)) where p0= 4.10^-4 ohm.m. The end of the rod x=0 is at a potential V0=30V greater than the x=L. A) what is the total resistance, in units of ohm, of the rod? B) what is the current, in units of miliamperes, in the rod? C) what is the electric potential, in units of Volt, in the rod at x=L/2?
Related questions
Question
Q4-5-6-7
A rod of semiconducting material of lenght L=3 m and cross-sectional area A=4.5 mm^2 lies along the x-axis between x=0 and x=L. The material obeys ohm's law, and resistivity varies along the rod according to p=p0 (1-(x^2/L^2)) where p0= 4.10^-4 ohm.m. The end of the rod x=0 is at a potential V0=30V greater than the x=L.
A) what is the total resistance, in units of ohm, of the rod?
B) what is the current, in units of miliamperes, in the rod?
C) what is the electric potential, in units of Volt, in the rod at x=L/2?
D) what is the electic-field magnitude E, in units of V/m, in the rod at x=L/2?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images