A remote-sensing payload operates in the infrared part of the spectrum (lambda = 1 micrometer). If it has an aperture diameter of 1 m, what would its resolution be (in meters) while operating in a geosynchronous orbit (35,786 km)? What formula would I use to find this?

Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Michael A. Seeds, Dana Backman
Chapter5: Light And Telescopes
Section: Chapter Questions
Problem 7P: H does the resolving power of the 5-rn telescope on Mount Palomar near San Diego compare with that...
icon
Related questions
Question
A remote-sensing payload operates in the
infrared part of the spectrum (lambda = 1
micrometer). If it has an aperture diameter
of 1 m, what would its resolution be (in
meters) while operating in a
geosynchronous orbit (35,786 km)?
What formula would I use to find this?
Transcribed Image Text:A remote-sensing payload operates in the infrared part of the spectrum (lambda = 1 micrometer). If it has an aperture diameter of 1 m, what would its resolution be (in meters) while operating in a geosynchronous orbit (35,786 km)? What formula would I use to find this?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Horizons: Exploring the Universe (MindTap Course …
Horizons: Exploring the Universe (MindTap Course …
Physics
ISBN:
9781305960961
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
Astronomy
Astronomy
Physics
ISBN:
9781938168284
Author:
Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:
OpenStax