A quantity of N molecules of an ideal gas initially occupies volume V. The gas then expands to volume 2V. The number of microscopic states of the gas increases in this expansion. Under which of the following circumstances will this number increase the most? (i) If the expansion is reversible and isothermal; (ii) if the expansion is reversible and adiabatic; (iii) the number will change by the same amount for both circumstances.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 38P: One mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a...
icon
Related questions
Question

A quantity of N molecules of an ideal
gas initially occupies volume V. The gas then expands to volume 2V. The number of microscopic
states of the gas increases in this expansion. Under which of the following circumstances will
this number increase the most? (i) If the expansion is reversible and isothermal; (ii) if the expansion
is reversible and adiabatic; (iii) the number will change by the same amount for both
circumstances.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning