College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A pole, 10.00 meters long is attached at one end by a hinge to a wall. A mass is attached to the pole 8.00 meters from the hinge. The pole is horizontal, has a uniform mass distribution, and has a weight of 800 N. A cable is attached to the wall and also to the far end of the pole. The pole makes an angle of 43 degrees with cable. The tension on the cable is 2500 N.
1) Calculate the hanging mass
2) Calculate the force the hinge exerts on the pole
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a 1001 N uniform beam is attached to a vertical wall at one end and js supported by a cable at the other end 1550 N crate hangs from the far end of the beam find the magnitude if the tension in the wire the angle theta is 21 degrees and phi is 32 degrees length of beam is Larrow_forwardA uniform drawbridge must be held at a 38o angle above the horizontal to allow ships to pass underneath. The drawbridge weights 55000 N and is 15.0 m long. A cable is connected 3.5 m from the hinge where the bridge pivots (measured along the bridge) and pulls horizontally on the bridge to hold it in place. What is the tension in the cable? Find the magnitude and direction of the force the hinge exerts on the bridge. If the cable suddenly breaks, what is the magnitude of the angular acceleration of the drawbridge just after the cable breaks? What is the angular speed of the drawbridge as it becomes horizontal? What is the velocity of the drawbridge, just before it “hits” (i.e. goes horizontal)?arrow_forwardA horizontal 4.0 m long 5.0 N uniform bar at one end is attached to a wall by a frictionless hinge; and at the middle of the bar there is a vertical cable pulling down 7.0 N, and at the middle of the bar there is also a cable that is at 45 ° to the horizontal pulling up as shown. ii) What is the magnitude of the horizontal component of the force on the bar due to the hinge?arrow_forward
- A shelf bracket is mounted on a vertical wall by a single screw. S S2 S1 Neglecting the weight of the bracket, and if s = 6.4 cm, s1 the horizontal force component exerted on the bracket by the screw when a 95.2 N vertical force is applied as shown. Imagine that the bracket is slightly loose. 5.4 cm and s2 = 2.2 cm, find =arrow_forwardH 60° Figure 6 G M 8. A uniform rod HG of length 2L m and mass m = 2 kg is hinged at end H, as shown in Figure 6 A mass Mg=100 N is hung at the other end G. A horizontal cable at the midpoint of the rod holds it at an angle of 60° to the horizontal. The cable is under a constant tension T. (a) Draw a diagram showing all the forces acting on the rod and determine the tension T in the cable. (b) Calculate both the x and y components (Fr and F₁) of the force F at the hinge H. (c) Will the net force F at H act along the rod HG? Justify your answer.arrow_forwardAn archer's bow is drawn at its midpoint until the tension in the string is 0.866 times the force exerted by the archer. What is the angle between the two halves of the string? Number i ! Units ° (degrees)arrow_forward
- a meter log is a uniform bar of mass m = 77 kg. You want to support it at a rest parallel to the ground. so you place it on a triangle support at 33 cm mark and tie it with a rope on the ground at the 28 cm mark. A) draw your own configuration out. calculate the tension of the rope ____ N, downward, upward, right, left, or none and support force provided by the triangle support _______ N, downward, upward, right, left, or none b) suppose a gumdrop (point mass mb = 14.00 kg) hangs on to the meter log at the 91 cm mark How large will the tension be on the rope? ______ N conceptually explain why it should increase, decrease, or stay the same, compared to part A. C) Now with everything including the gumdrop, the triangle support has been moved away from the rope, to the end of the meter log.Explain why the system itself cannot stay balanced anymore, and the rope goes (T→0). Calculate: rotational inertia of the system below. I = _______ kg·m2Calculate the sizes (+ only) of both the…arrow_forwarda meter log is a uniform bar of mass m = 77 kg. You want to support it at a rest parallel to the ground. so you place it on a triangle support at 33 cm mark and tie it with a rope on the ground at the 28 cm mark. A) draw your own configuration out. calculate the tension of the rope ____ N, downward, upward, right, left, or none and support force provided by the triangle support _______ N, downward, upward, right, left, or none b) suppose a gumdrop (point mass mb = 14.00 kg) hangs on to the meter log at the 91 cm mark How large will the tension be on the rope? ______ N conceptually explain why it should increase, decrease, or stay the same, compared to part A. C) Now with everything including the gumdrop, the triangle support has been moved away from the rope, to the end of the meter log.Explain why the system itself cannot stay balanced anymore, and the rope goes (T→0). Calculate: rotational inertia of the system below. I = _______ kg·m2Calculate the sizes (+ only) of both the…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON