
A plane layer of coal of thickness L = 1 m experiences uniform volumetric generation at a rate of q̇= 40 ?/?3 due to slow oxidation of the coal particles. Averaged over a daily period, the top surface of the layer transfers heat by convection to ambient air for which h = 10 W/m2·K and T∞= 20 °C, while receiving solar irradiation in the amount GS = 1360 W/m2. Irradiation from the atmosphere may be neglected. The solar absorptivity and emissivity of the surface are the same, each αS = ε = 0.90.
a) Write the steady-state form of the 1D Cartesian heat diffusion equation (HDE) for the layer of coal. Using the HDE, determine the temperature distribution as a function of x and constants given above.
b) Sketch the temperature distribution and label key features.
c) Obtain an expression for the rate of heat transfer by conduction per unit area at x = L. Applying an energy balance to a control surface about the top surface of the layer, obtain an expression for Ts. Evaluate Ts and T(0) for the prescribed conditions.


Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

- Using a polynomial equation solver, determine the steady-state surface temperature (Ts) of the passive radiative cooler below that is exposed to a windy convective enviroment h=40 W/m2*K and T∞= 25°C. The surrounding atmosphere is fixed at Tsur= 10°C. Set up the energy balance/conservation equation.arrow_forwardA quartz radiant heater has two cylindrical tubes 40 cm long and 1 cm radius. The heater is designed to produce 1300 watts of radiant power. What would be the temperature of the tubes if the emissivity of the tubes is 0.60. a. 570 K b. 934 K c. 980 K d. 1068 Karrow_forward1. A glass window allows 95% of radiant energy between 0.32 < 1 < 2.6 microns to pass. Any wavelength outside of this range will not pass through the glass. Compute the energy rate passed through the glass window if the incident energy rate on the glass is 1200 W/m^2. 0.9 0.4 E0-a ot 0.4 0.2 0.1 15,000 AT(Micron-Rankine) S000 10,000 20.000 25,000 30,000 33,000 00 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Amax Ans. 1026 W/m^2arrow_forward
- a. What does it mean when we say that a surface 'sees itself' in the context of radiative heat transfer? b. If heat transfer by conduction through a medium occurs under steady- state, will the temperature at a particular location vary with time? Will the temperature vary with location in the medium?arrow_forwardA composite wall is comprised of two large plates separated by sheets of refractory insulation. In the installation process, the sheets of thickness L = 50 mm and thermal conductivity k = 0.05 W/mK are separated at 1-m intervals by gaps of width w = 10 mm. The hot and cold plates have temperatures and emissivities of T1 = 400 deg C, emissivity1 = 0.85 and T2 = 35 deg C, emissivity2 = 0.5, respectively. Assume that the plates and insulation are diffuse-gray surfaces. %3D Determine the heat loss by radiation through the gap per unit length of the composite wall (normal to the page). Recognizing that the gaps are located on a 1-m spacing, determine what fraction of the total heat loss through the composite wall is due to transfer by radiation through the insulation gap. Hot side Gap w = 10 mm A. 47 W/m, 9.2% T1 = 400°C B. 47 W/m, 10.2% L = 50 mm C. 37 W/m, 10.2% D. 37 W/m, 9.2% T2 = 35°C Cold side 1 m Insulation, k = 0.05 W/m-Karrow_forwardA long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC. a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made. Specifically need help with part barrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





