
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:A particle of charge Q = 6.0 μC and mass m = 1.0 x 10-10 kg is fired out of a
"charge gun" (essentially a capacitor with a hole in it) towards a uniform magnetic field pointing
into the page as shown in the drawing. The field has
a strength of B = 0.50 T. The particle enters the field
at point P, moving upward. The "charge gun" works
by accelerating the particle through a voltage AV =
200 V. You can ignore gravity for this problem.
a. How fast is the particle moving when it leaves
the charge gun?
b. Does the particle exit the magnetic field to the
left or right of point P? Make a sketch of its
path.
c. How far from point P does the particle exit the
magnetic field?
P
0
charge
gun
K
x x
x x x
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 5 images

Knowledge Booster
Similar questions
- A positively charged particle of mass 8.84 x 10-8 kg is traveling due east with a speed of 79.2 m/s and enters a 0.346-T uniform magnetic field. The particle moves through one-quarter of a circle in a time of 3.34 x 10-3 s, at which time it leaves the field heading due south. All during the motion the particle moves perpendicular to the magnetic field. (a) What is the magnitude of the magnetic force acting on the particle? (b) Determine the magnitude of its charge. (a) Number i (b) Number i Units Units B (out of screen)arrow_forwardA magnetic dipole with a dipole moment of magnitude 0.017 J/T is released from rest in a uniform magnetic field of magnitude 62 mT. The rotation of the dipole due to the magnetic force on it is unimpeded. When the dipole rotates through the orientation where its dipole moment is aligned with the magnetic field, its kinetic energy is 9.2 ⋅10−49.2 ⋅10-4 J. What is the initial angle between the dipole moment and the magnetic field?arrow_forwardA positively charged particle of mass 6.82 x 10-8 kg is traveling due east with a speed of 64.2 m/s and enters a 0.397-T uniform magnetic field. The particle moves through one-quarter of a circle in a time of 4.06 × 10-³ s, at which time it leaves the field heading due south. All during the motion the particle moves perpendicular to the magnetic field. (a) What is the magnitude of the magnetic force acting on the particle? (b) Determine the magnitude of its charge. (a) Number (b) Number pi i Units Units V < B (out of screen)arrow_forward
- An infinitely long wire carrying a current of I = 2.95 A is bent into the shape shown in the figure. The angle the arc subtends is = 73.5° and the radius of the arc is 24.0 cm. Determine the magnitude and direction of the magnetic field at the point P which is at the center of the arc. (Let the +x direction point to the right, the +y direction point up, and the +z direction point out of the page.) magnitude direction ---Select--- yarrow_forwardA proton has a velocity of 1.1X10^2 m/s î +1.8X10^2 m/s ĵ and is located in the z=0 plane at x=3.4m, y=3.6m at some time t=T. Find the magnetic field in the z=0 plane at the following at x=1.9m, y=1.9m.arrow_forwardAn proton moves with a speed of 5.0 × 10^5 m/s along the +x-axis. It enters a region where there is a magnetic field of 3.0 T, directed in the y-axis. Calculate the magnitude of the acceleration of the proton. (q = 1.60 × 10~19 c, me1 = 1.67 × 1027 kg) O o m/s? O 1.3 x 1018 m/s² O 1.5x 1014 m/s² O 1.3 x 10-18 m/s² O 3.0 x 10-18 m/s²arrow_forward
- An electron enters a region of space containing a uniform 1.03 x 10-5 T magnetic field. Its speed is 101 m/s and it enters perpendicularly to the field. Under these conditions, the electron undergoes circular motion. Find the radius r of the electron's path and the frequency f of the motion. r= f = m Hzarrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude B = 1.70 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle 8 = 41.0° to the linear boundary of the field as shown in Figure P29.69. www XXX xxx xx xxxx xxx Submit Answer Save Progress XXX XXX Figure P29.69. (a) Find x, the distance from the point of entry to where the proton will leave the field. 0.1365786648 x Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Determine 8', the angle between the boundary and the proton's velocity vector as it leaves the field. 0 Practice Another Versionarrow_forwardA charged particle of mass m = 7.2X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 1.8T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.74 m, 0) and leaves the region at (x,y) = 0, 0.74 m a time t = 691 µs after it entered the region. %3D 1) With what speed v did the particle enter the region containing the magnetic field? 1681.3 m/s Submit 2) What is Fx, the x-component of the force on the particle at a time t1 230.3 µs after it entered the region containing the magnetic field. %3D -0.2382 N Submit + 3) What is Fy, the y-component of the force on the particle at a time t1 = 230.3 µs after it entered the region containing the magnetic field. -0.1375 N Submit 4) What is q, the charge of the particle? Be sure to include the correct sign. µC Submitarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON