College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A particle moves horizontally in uniform circular motion,
over a horizontal xy plane. At one instant, it moves through the
point at coordinates (4.00 m, 4.00 m) with a velocity of 5.00 m/s
and an acceleration of +12.5 m/s2. What are the (a) x and (b) y
coordinates of the center of the circular path?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Position vector of a moving particle is given by r(t)= (2t2−5t+2, 2t2+1,(t+1)2) (a) At what time(s) does the particle pass the yz -plane correctly? (b) What are the particle (i) coordinates, (ii) velocity, (iii) speed, and ((iv) acceleration at t=1 correctly?arrow_forwardA cat rides a merry-go-round turning with uniform circular motion. At time t = 1.70 s, the cat's velocity is (3.90 m/s) î + (2.50 m/s) ĵ, measured on a horizontal xy coordinate system. At t2 = 5.30 s, its velocity is (-3.90 m/s) î + (-2.50) ĵ. What are (a) the magnitude of the cat's centripetal acceleration and (b) the magnitude of the cat's average acceleration during the time interval t2 - t1, which is less than a %3D period of the motion? (a) Number Unit (b) Number Unit >arrow_forwardProblem 1: The acceleration vector of a particle is giving by a = -27 t2 j m/s“. The particle is located at the origin at t = 0 s and has an initial velocity V. = 2(m/s) i + 3(m/s) j. Find: 1. The velocity of the particle as a function of time. 2. The maximum height the particle reaches.arrow_forward
- An athlete can jump to a height of 2.0 meters leaving the ground at an angle of θ = 60.0◦ to the horizontal. What is the magnitude of the athlete’s velocity at the moment the athlete leaves the ground (ignore the person’s size/shape).arrow_forwardA particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it moves through the point at coordinates (3.70 m, 4.10m) with a velocity of -2.70 7 m/s and an acceleration of +12.9 m/s². What are the (a) x and (b) y coordinates of the center of the circular path? (a) Number i (b) Number i Unit Unitarrow_forwardA particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it moves through the point at coordinates (4.00 m, 4.00 m) with a velocity of -5.00 m/s i and an acceleration of -12.5 (m/s^2) j . What are the (a) x and (b) y coordinates of the center of the circular path?arrow_forward
- The position vector of a particle in 2D is given by r(t) = (bwt + b sin(wt)) â + (b + bcos (wt)) ŷ, where b and w are constants. Find the velocity, v(t), and acceleration, a(t), of the particle. Is the speed of the object constant?arrow_forwardA particle initially located at the origin has an acceleration of a = 1.00ĵ m/s2 and an initial velocity of ₁ = 6.00î m/s. (a) Find the vector position of the particle at any time t (where t is measured in seconds). tî + t²ĵ) m (b) Find the velocity of the particle at any time t. Î+ tĵ) m/s (c) Find the coordinates of the particle at t = 4.00 s. X = y = m m (d) Find the speed of the particle at t = 4.00 s. m/sarrow_forwardA plane flies 493 km east from city A to city B in 45.0 min and then 983 km south from city B to city C in 1.30 h. For the total trip, what are the (a) magnitude and (b) direction of the plane's displacement, the (c) magnitude and (d) direction of its average velocity, and (e) its average speed? Give your angles as positive or negative values of magnitude less than 180 degrees, measured from the +x direction (east). (a) Number i Units (b) Number Units (c) Number i Units (d) Number i Units (e) Number Units IIarrow_forward
- A projectile is launched with an initial velocity 38 m/s and an angle from the horizontal of 45°. The acceleration due to gravity is 9.81 m/s². Assume the projectile is launched from the surface of the Earth. i.e., at y (0) = 0. then the altitude of the projectile as a function of time is: y(t) = gt² + vo sin(0)t Where vo is the initial velocity. What is the maximum altitude achieved by the projectile?arrow_forwardThe position vector 4.70t|i+ [et + ft2 locates a particle as a function of time t. Vector is in meters, t is in seconds, and factors e and f are constants. The figure gives the angle e of the particle's direction of travel as a function of time (0 is measured from the positive direction of the x axis). What are (a) factor e and (b) factor f, including units? 20° 0° 10 20 -20° t (s) (a) Number Units (b) Number Unitsarrow_forwardThe drawing shows an exaggerated view of a rifle that has been 'sighted in' for a 91.4-meter target. If the muzzle speed of the bullet is Vo = 309 m/s, there are the two possible angles 0₁ and 02 between the rifle barrel and the horizontal such that the bullet will hit the target. One of these angles is so large that it is never used in target shooting. Give your answers as (a) the smaller angle and (b) the larger angle. (Hint: The following trigonometric identity may be useful: 2 sine cose = sin 20.) (a) Number (b) Number Units Units 91.4 m Oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON