College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A lab rat lifts a 200 g mass 1.55 m high as it spins on a Ferris wheel. At the same time, it loses 5.0 J of energy as heat. What would be the internal energy change if the animal was thought of as a closed system, ignoring all other losses?
note:Assume that all gases are ideal gases unless otherwise stated. All thermochemical data are for 298.15 K.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A storage building with well-insulated walls and containing 750 m³ of air at 275 K is heated at constant pressure (atmospheric). Consider air to be an ideal diatomic gas. (a) Determine the energy (in kJ) required to increase the temperature of the air in the building by 2.30°C. kJ (b) Determine the mass (in kg) this amount of energy could lift through a height 2.30 m. kgarrow_forwardAn ideal gas with γ = 1.40 occupies 8.26 L at 335 K and 79.2 kPa pressure. It's compressed adiabatically to one-third of its original volume, then cooled at constant volume back to 335 K. Finally, it's allowed to expand isothermally to its original volume. How much work is done on the gas?arrow_forwardThe temperature at state A is 20.0ºC, that is 293 K. During the last test, you have found the temperature at state D is 73.0 K and n = 164 moles for this monatomic ideal gas. What is the change in thermal energy for process D to B, in MJ (MegaJoules)?arrow_forward
- A monatomic ideal gas initially fills a V0 = 0.35 m3 container at P0 = 75 kPa. The gas undergoes an isobaric expansion to V1 = 1.5 m3. Next it undergoes an isovolumetric cooling to its initial temperature T0. Finally it undergoes an isothermal compression to its initial pressure and volume. 1. Calculate the heat absorbed Q2, in kilojoules, during the isovolumetric cooling (second process). 2. Calculate the change in internal energy by the gas, ΔU2, in kilojoules, during the isovolumetric cooling (second process). 3. Calculate the work done by the gas, W3, in kilojoules, during the isothermal compression (third process). 4. Calculate the change in internal energy, ΔU3, in kilojoules, during the isothermal compression (third process). 5. Calculate the heat absorbed Q3, in kilojoules, during the isothermal compressions (third process).arrow_forwardA car tire contains 0.0390 m3 of air at a pressure of 2.20×105 N/m2 (about 32 psi). How much more internal energy does this gas have than the same volume has at zero gauge pressure (which is equivalent to normal atmospheric pressure)?arrow_forwardA gas contained in a cylinder fitted with a frictionless piston expands against a constant external pressure of 1atm from a volume of 5L to a volume of 10L. In doing so, it absorbs 400 J of thermal energy from its surroundings. Determine the change in internal energy of system.arrow_forward
- The heat engine shown in the figure uses 2.0 mol of a monatomic gas as the working substance. (Figure 1) igure p (kPa) 600- 400 200 0 0 0.025 0.050 V (m³) 1 of 1 Part E part. What is the engine's thermal efficiency? Express your answer using two significant figures. η = Submit VE ΑΣΦ Request Answer ? %arrow_forwardA 1 mol sample of a diatomic ideal gas (γ=1.4) expands slowly and adiabatically from a pressure of 18 atm and a volume of 3 L to a final volume of 18 L. What is the final temprature (in K) of the gas? ( Answer no decimal )arrow_forwardQuestion B: A sample of 1.00 mole of a diatomic ideal gas is initially at temperature 265 K and volume 0.200 m3. The gas first undergoes an isobaric expansion, such that its temperature increases by 110.0 K. It then undergoes an adiabatic expansion so that its final volume is 0,440 m3. i. Sketch a PV diagram for the two-step process, including labeled initial, final, and intermediate states, and a two-part curve/path with an arrow indicating direction. Label the initial state "i", the final state "f", and the intermediate state "b". Write down the known values for P, T, and V at each point, e.g. T; = 265 K, and Th = 375 K. (B.1) What is the initial pressure of the gas, Pi, in pascals [Pa]? Pi = Pa Enter a number. (B.2) What is the total heat transfer, Q, to the gas, in joules [J]? Q = Qtotal = (B.3) What is the total work done on the gas, w, in joules [J]? w = Wtotal = Enter your answer for problem (B.3) for credit. First, use the following questions as intermediate steps; answers can…arrow_forward
- Please use the W=nRTln(V2/V1) equation.arrow_forwardOne mole of an ideal gas, for which CV,m = 3/2R, initially at 298 K and 1.00 × 10^5 Pa undergoes a reversible adiabatic compression. At the end of the process, the pressure is 1.00 × 10^6 Pa. Calculate the final temperature of the gas. Calculate q, w, ΔU, and ΔH for this process.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON