Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A high-impulse universal testing machine is being used to determine the Young's Modulus of a rectangular solid specimen (l = 20 cm, t = 1.5 cm, w = 2 cm). The machine produces 35,000 Ns that causes the impact force of compression resulted to a 1 mm deformation in the length of the specimen in 0.05 s. Determine the Young's modulus of the specimen expressed in MPa. Round off your answer to the nearest whole number
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (i) Give the correct number of significant figures for: 4500 0.0032 0.04050 (ii) Write in scientific notation and engineering notation: 0.000467 32000000arrow_forwardIn a tensile test for an aluminum alloy, the sample used is 2 inches long and 0.5 inches in diameter. The proportional portion of the tension stress-strain diagram for an aluminum alloy is shown below. _x106 lb/in² Pay attention to units and calculate your answer to 1 decimal place for the unit specified above. σ (ksi) 70 t 0.00614 Determine the modulus of elasticity for this material: € (in./in.)arrow_forwardFor a given homogeneous, isotropic, linearly elastic material, E = 15e6 psi and v = 0.3. Solve for the shear modulus. 2.1.1 Homogeneous, isotropic, linearly elastic materials For specimens undergoing small deformations, the stress-strain diagram often ex- hibits a linear behavior. Although this is a very crude approximation to the behavior of actual materials, it is a convenient assumption that is often used for preliminary evaluation. A linear relationship between stress and strain can be expressed as 01 = E €1, (2.1) where the coefficient of proportionality, E, is called Young's modulus or modulus of elasticity. Since strains are non-dimensional quantities, this coefficient has the same units as stress quantities, i.e., Pa. This linear relationship is known as Hooke's law. The elongation of a bar in the direction of the applied stress is accompanied by a lateral contraction that is also proportional to the applied stress. The resulting defor- mations for this uniaxial state of stress…arrow_forward
- SOLVE CAREFULLY!! Please Write Clearly and Box the final Answerarrow_forwardUse the linear equation below to calculate Y in newtons based on X, m and b. Given Y=mX+b (Eq. 1) Ⓡ X = 49 W m = 9.7734 N hp¹¹ b = 0.745 kN NOTE: This problem has been purposely complicated by mixing metric & US Engineering units. In your own work, stick to one system if possible.arrow_forwardCompute the elongation, in %, of a cylindrical copper rod if it is cold worked such that the diameter is reduced from 15.9 mm to 10.4 mmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY