Question
The coherent states for the one-dimensional harmonic oscillator are defined as eigenstates of the operator
of annihilation a (which is non-Hermitian):
a |λ⟩ = λ |λ⟩ (1)
where λ is a complex number in general.
a)prove that is a normalized consistent state.
b)Show that the above state satisfies the minimum uncertainty relation, i.e., show that
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Solve the problem for a quantum mechanical particle trapped in a one dimensional box of length L. This means determining the complete, normalized wave functions and the possible energies. Please use the back of this sheet if you need more room.arrow_forwardConsider a weakly anharmonic a 1D oscillator with the poten- tial energy m U(x) = w?a² + Ba* 2 Calculate the energy levels in the first order in the small anharmonicity parameter 3 using TIPT and the ladder operators.arrow_forwardA particle of mass m is confined within a finite square well of depth V0 and width L.Sketch this potential, together with the form of the wavefunction and probability density for a particle in the lowest energy state. Briefly outline the procedure you would follow to determine the total number of energy eigenstates that can exist within a given finite square well.arrow_forward
- consider an infinite square well with sides at x= -L/2 and x = L/2 (centered at the origin). Then the potential energy is 0 for [x] L/2 Let E be the total energy of the particle. =0 (a) Solve the one-dimensional time-independent Schrodinger equation to find y(x) in each region. (b) Apply the boundary condition that must be continuous. (c) Apply the normalization condition. (d) Find the allowed values of E. (e) Sketch w(x) for the three lowest energy states. (f) Compare your results for (d) and (e) to the infinite square well (with sides at x=0 and x=L)arrow_forwardProve in the canonical ensemble that, as T ! 0, the microstate probability ℘m approaches a constant for any ground state m with lowest energy E0 but is otherwise zero for Em > E0 . What is the constant?arrow_forwardwhat are the possible results that may be obtained upon measuring the property lz on a particle in a particular state, if its wavefunction is known to be Ψ, which is an eigenfunction of l2 such that l2Ψ=12ℏΨ? SHOW FULL AND COMPLETE PROCEDURE IN A CLEAR AND ORDERED WAYarrow_forward
arrow_back_ios
arrow_forward_ios