
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
A dual cycle has an initial temperature of 30⁰C. The compression ratio is 6 and the heat addition at constant volume process is 600 kJ/kg. If expansion ratio is 2.5, the maximum temperature of the cycle is _____?
use cv= 0.7186 kj/kg-K
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ! Required information Problem 09.034 - Ideal Otto Cycle with Variable Specific Heats - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 760 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R = 0.287 kJ/kg-K. Problem 09.034.a - State After Heat Addition in Variable Heat Capacity Ideal Otto Cycle Determine the pressure and temperature at the end of the heat-addition process. (You must provide an answer before moving on to the next part.) The pressure at the end of the heat-addition process is 3915.8 kPa. The temperature at the end of the heat-addition process is 1647.7 K.arrow_forward1. An engine with a cylinder volume of 250 cc and a volume at top dead centre of 25 cc uses a thermal cycle where the initial stage is an isentropic adiabatic compression process with the equation pvY = C. It is known that the initial conditions are 1 bar and 30°C. After that, a combustion process takes place in which heat is supplied at a constant volume. The heat given is 80 KJ/kg and if the specific heat at constant volume is known to be 0.718 kJ/kg K, determine the maximum temperature and pressure that occur? 2. Air with a mass of 3 kg is heated at constant volume from 25°C to 120°C. The process then takes place at constant pressure so that the gas has a temperature of 550°C. Determine the heat required and the entropy change that occurs during the process? (Air: Cp = 1.005 kJ/kg.K and y = 1.4; and assume Cp does not change with temperature). Known that initial volume is 50 ml and the last volume is 300 ml.arrow_forwardTemperature after the heat addition process = K Thermal efficiency =% Mean effective pressure = kpaarrow_forward
- Required information Problem 09.052 - Ideal Diesel Cycle with Variable Specific Heats - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 103 kPa and 27°C. Account for the variation of specific heats with temperature. The gas constant of air is R= 0.287 kJ/kg-K. Problem 09.052.b - Thermal Efficiency in Variable Heat Capacity Diesel Cycle Determine the thermal efficiency. (You must provide an answer before moving on to the next part.) The thermal efficiency is 59.38 %.arrow_forwardIn a constant volume cycle, the pressure at the end of compression is 10 times that at the start, the temperature limits are 20 ° C and 1900 ° C. Determine i. Compression ratio, ii. Thermal efficiency and iii. Work done. Take R = 287 J/kg K, y = 1.4arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY