College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Which statement about thin lenses is correct? In each case, we are considering only a single lens.
Group of answer choices
A converging lens sometimes produces a real erect image.
A converging lens always produces a real inverted image.
A diverging lens always produces a virtual erect image.
A diverging lens always produces a virtual inverted image.
A diverging lens produces a virtual erect image only if the object is located within the focal point of the lens.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is the image supposed to be real, virtual, inverted, upright?arrow_forwardI need help please.arrow_forwardAndy forms a hollow lens whose skin is very thin, strong, and transparent. The inside of his lens is vacuum. Which of the following is true? -The focal length of Andy's lens is infinite. -The focal length of Andy's lens is zero. -There is not enough information to determine the focal length of Andy's lens.arrow_forward
- A person looks at a gem using a converging lens with a focal length of 13.8 cm. The lens forms a virtual image 33.1 cm from the lens. Find the magnification. Describe the image. 1. real, upright, larger 2. real, inverted, larger 3. virtual, upright, larger 4. real, inverted, smaller 5. virtual, inverted, larger 6. real, upright, smaller 7. virtual, inverted, smaller 8. virtual, upright, smallerarrow_forwardFamous jeweler Gabi Tolkowsky is looking at a 3.0-cm-tall perfect oval-shaped diamond through a thin lens. The diamond is 20.0 cm behind the lens, and the distance between its upright image and the lens is 40.0 cm. What is the focal length of the lens? Is it converging or diverging? How tall is the image? PLEASE PLEASE draw a ray diagram and define variablesarrow_forwardIn the following three scenarios, an object is located on one side of a converging lens. In each case, you must determine if the lens forms an image of this object. If it does, you also must determine the following. whether the image is real or virtual whether the image is upright or inverted the image's location, q the image's magnification, M The focal length is f = 13.0 cm for this lens. Set both q and M to zero if no image exists. Note: If q appears to be infinite, the image does not exist (but nevertheless set q to 0 when entering your answers to that particular scenario). (a) The object lies at position 13.0 cm. (Enter the value for q in cm.) q=? M=? Select all that apply to part (a). real, virtual, upright, inverted, no image (b) The object lies at position 1.44 cm. (Enter the value for q in cm.) q=? M=? Select all that apply to part (b). real, virtual, upright, inverted, no image (c) The object lies at position 71.5 cm. (Enter the value for q in cm.) q=?…arrow_forward
- You are having trouble reading your cheat sheet during your physics exam because you wrote so small. You foresaw the problem, so you brought a small lens with you to the exam. You hold the lens 6 cm away from the page. The image you see is upright and 2.9 times the size of the writing on the page. where is image formed Is the image real or virtual what is the focal length of the lens are you using a converting lens or a diverging lensarrow_forwardQ: You hold up a piece of paper by a lens and see the image of a candle projected on the paper. Is this image real or virtual? Q: Will the projected image show the candle right-side-up or upside-down? Q: You look through a concave (diverging) lens at a candle. Will the image you see be smaller or larger in size than the actual candle?arrow_forwardA small object is placed to the left of a convex lens and on its optical axis. The object is 46 cm from the lens, which has a focal length of 15 cm.Determine the location of the image formed by the lens. (Enter your answer in cm from the lens.) 1. cm from the lens 2. Describe the image.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON