College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A cylinder with a piston holds 4.50 moles of a diatomic gas. The gas in the cylinder absorbs 975 J of energy due to the higher temperature of the environment. At the same time, the cylinder expands to a larger volume, doing 112 J of work on the environment.
(a) What is the change in internal energy of the gas in the cylinder (in J)?
(b) What is the change in temperature of the gas (in K)?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A gas has a constant pressure of 3000Pa. It is isobarically expanded from 0.75m^3 to 1.25m^3. During the process, 100J of thermal energy is added through heat. a) What is the work done on the gas? b) What is the change in internal energy of the gas?arrow_forwardAn ideal gas initially at 340 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 12.6 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas? Karrow_forwardA helium-filled toy balloon has a gauge pressure of 0.400 atm and a volume of 11.0 liters. How much greater is the internal energy (in J) of the helium in the balloon than it would be at zero gauge pressure?arrow_forward
- Consider the following figure. (The x axis is marked in increments of 2 m³.) P (Pa) 6 X 106 4 X 106 2 X 106 V (m³) (a) Determine the work done on a gas that expands from i to f as indicated in the figure. MJ Ⓡ (b) How much work is performed on the gas if it is compressed from f to i along the same path? MJarrow_forwardA cylinder of volume 0.320 m3 contains 10.5 mol of neon gas at 17.4°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa(b) Find the internal energy of the gas. J(c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J(d) What is the temperature of the gas at the new volume? K(e) Find the internal energy of the gas when its volume is 1.000 m3. J(f) Compute the change in the internal energy during the expansion. J(g) Compute ΔU − W. J(h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? This answer has not been graded yet. (i) Compute Q, the thermal energy transfer. J(j) What symbolic relationship between Q, ΔU, and W is suggested by the values obtained?arrow_forwardSuppose a gas absorbs 498 J of energy while doing 147 J of work on its environment. Calculate the change in the internal energy of the gas.arrow_forward
- tab Consider the following figure. (The x axis is marked in increments of 2.5 m³.) P (Pa). esc caps lock 6 x 106 4 X 106 2 x 106 V (m³) 1 (a) Determine the work done on a gas that expands from i to f as indicated in the figure. MJ (b) How much work is performed on the gas if it is compressed from f to / along the same path? MJ ! 1 F1 A NO 2 N FF 200 F2 W S # 3 80 F3 X E * D $ 4 F4 R C % 5 F MacBook Air T V の‥ 6 F6 G & 7 F7 H B 2 Earrow_forwardA sample of ideal gas in a thermally insulated container with a movable piston is initially in state A. The gas is taken from state A to state B by an adiabatic process. The dashed lines represent isotherms. If W is the work done on the gas, Q is the energy transferred to the gas by heating, and Delta U be the change in the internal energy of the gas during the process. a) is W greater than zero, zero, or less than zero? Explain briefly b) is Q greater than zero, zero, or less than zero? Explain briefly. c) is Delta U greater than zero, zero, or less than zero? Explain briefly.arrow_forwardThe first law of thermodynamics, ΔU = Q - W, when written as Q = W + ΔU, says that the heat into a system can be used to do work and/or increase the internal energy. Therefore, which process requires the most heat? Isobaric, isochoric, or adiabatic?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON