College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
One mole of an ideal gas is heated slowly so that it triples its volume and pressure, in such a way that the pressure of the gas is directly proportional to its volume (linear relationship).
Whats the work consumed by the gas?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One mole of an ideal gas initially at a temperature of Ti = 7.4°C undergoes an expansion at a constant pressure of 1.00 atm to nine times its original volume. Calculate the work done on the gas during the expansion.arrow_forwardQuestion 3. (a) Find the work done by an ideal gas as it expands along the path ABCDA shown in Figure 1 (left). (b) Find the work done by an ideal gas as it expands from point A to point B along the path, and also find the work done when it is compressed from B to A along the same path shown in Figure 1 (right). P (10°Pa) P (kPa) 4.00 400 300 200 100 1.00 C. V(m³) 5.00 +V(m²) 1 2 3 45 6 1.00 Figure 1: Work done by an ideal gasarrow_forwardThe volume and pressure of a gas are 8.00 m³ and 2.1 atm respectively. (a) If this gas expands to three times its initial volume while the pressure is constant, determine the work done on the gas. (b) On the other hand, if this gas is compressed to one-third its initial volume while the pressure is constant, determine the work done on the gas. Additional Materials MReadingarrow_forward
- Gas in a container is at a pressure of 1.9 atm and a volume of 6.0 m3. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? J(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? Jarrow_forwardA heat pump removes 2060 J of heat from the outdoors and delivers 3060 J of heat to the inside of a house. (a) How much work does the heat pump need?(b) What is the coefficient of performance of the heat pump?arrow_forwardIf a piston pushes on a cylinder of gas with a force of 2750 Newtons through a stroke of 4.00 cm, how much work did it do? Remember, the metric unit of work is a Joule.arrow_forward
- How much work is done when a piston is compressed from 7.71 L to 4.98 L under constant atmospheric pressure (1.013 x 105 Pa)? Give your answer in joules.arrow_forwardAs a gasoline engine is running, an amount of gasoline containing 15,000J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000 J of work. (b) The burning gasoline has a temperature of about 2500 K. The waste heat from the engine flows into air at about 300 K. What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forwardGas in a container is at a pressure of 1.6 atm and a volume of 1.0 m3. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? J(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? Jarrow_forward
- A sample of ideal gas is expanded to twice its original volume of 0.7 m³ in a quasi-static process for which P=aV² with a = 5 atm/m6, V₁ = 0.7 m³ and Vi Va 1.4 m³, as shown in the figure. 3 P P = (5 atm/m³) V² V = 0.7 m³ 3 1.4 m³ 3 How much work was done by the expanding gas? Answer in units of J.arrow_forwardAn engine receives 660 J of heat from a hot reservoir and givesoff 420 J of heat to a cold reservoir. What are (a) the work donearrow_forwardDoes a gas do any work when it expands adiabatically? If so, what is the source of the energy needed to do this work?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON