College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A curve of radius 180 m is being designed in a new highway to allow cars travelling at 70 km/hr to round the curve with zero frictional forces.
a.) At what angle must the road be banked?
b.) What is the minimum coefficient of friction that will allow a car to successfully go around the curve at 30 km/hr?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the curve on the road has a bank angle of 18 degrees and the radius of curvature is 225m. a) what is the maximum speed you can go if the coefficient of friction between the tires and the road is 0.3? Your car is 1500kg. b)What is the minimum speed you can go without sliding?arrow_forwardb) The maximum speed that a car can turn a curve of 9.00 m radius without skidding is 70.0 mph (miles per hour). If the coefficient of friction between the tires and the road is 0.600, what is the rated speed of the banked curve? On a wet day, the same car begins to skid on the curve when its speed reaches 60.0 mph. What is the coefficient of friction in this case? Please answer with complete solution and fre body diagramarrow_forward3. A car of mass m is traveling along a circular track of radius r with a constant speed v. Determine the minimum coefficient of static friction between the tires and the track required for the car to remain in circular motion if: a. the track is flat. b. the track has an anglearrow_forward
- In 1959, Daytona Speed was added to the NASCAR racing circuit and introduced 31° banked curves for racing. This allowed stock cars to reach much higher speeds (around 200 mph) during a race. Today the steepest banked curves are found at Talladega Motor Speed Way at 33° with a turn radius of 1100 ft. The flattest track in NASCAR is Hew Hampshire Motor Speed Way with banked curves of 7° with a turn radius of 410 ft. a) Assuming no friction, what are the max speeds (in mph) without slipping toward the outer edge of the track at the Talladega and NH Motor Speedways? b) With friction (assume μs of 1.1 between the tires and the track)?arrow_forwardWhat has to be the radius R, in order for the static friction to provide adequate Centripedal force? LOOK AT PICTUREarrow_forwardA car drives around two circular curves on two different roads. The two curves have the same radius of curvature. And coincidentally, the maximum speed that the car can drive through either of the turns is the same for both roads. The first road is frictionless, but it is banked at 14.5 degrees from the horizontal. The other turn is flat. What is the coefficient of friction between the car tires and the road on the unbanked turn?arrow_forward
- Problem 1: What is the ideal speed to take a 100 m radius curve that's banked at a 20° angle? "Ideal" in this context means the centripetal force is provided entirely by the horizontal component of the normal force with no need for static friction between the tires and the ground.arrow_forwardA car rounds an unbanked curve of radius 65 m. If the coefficient of static friction between the road and car is 0.72, then answer the following questions. (a) What force provides the centripetal force? A. Weight of the car B. Normal force on the car from the road C. Force of static friction (b) What is the maximum speed at which the car can traverse the curve without slipping? Enter to 2 significant figures Vmax= 18.07 m/sarrow_forwardA car is trying to make a turn on a banked curve on a very icy day and the frictional force between the tires and road is zero. The curve has a radius of 50 m and the car is moving at 12 m/s. What angle should the curve be banked at for this to happen safely?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON