A constant current of I = 15 A exists in a solenoid whose inductance is L = 3.7 H. The current is then reduced to zero in a certain amount of time. (a) If the current goes from 15 to 0 A in a time of 75 ms, what is the emf induced in the solenoid? (b) How much electrical energy is stored in the solenoid? (c) At what rate must the electrical energy be removed from the solenoid when the current is reduced to 0 A in a time of 75 ms? Note that the rate at which energy is removed is the power. (a) ε= (b) E = i (c) P = i
A constant current of I = 15 A exists in a solenoid whose inductance is L = 3.7 H. The current is then reduced to zero in a certain amount of time. (a) If the current goes from 15 to 0 A in a time of 75 ms, what is the emf induced in the solenoid? (b) How much electrical energy is stored in the solenoid? (c) At what rate must the electrical energy be removed from the solenoid when the current is reduced to 0 A in a time of 75 ms? Note that the rate at which energy is removed is the power. (a) ε= (b) E = i (c) P = i
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 1 steps with 1 images