A company has developed a design for a high-quality portable printer. The two key components of manufacturing cost are direct labor and parts. During a testing period, the company has developed prototypes and conducted extensive product tests with the new printer. The company's engineers have developed the bivariate probability distribution shown below for the manufacturing costs. Parts cost (in dollars) per printer is represented by the random variable x and direct labor cost (in dollars) per printer is represented by the random variable y. Management would like to use this probability distribution to estimate manufacturing costs. Parts (x) Direct Labor (y) Total 43 45 48 85 0.2 0.05 0.2 0.45 95 0.25 0.1 0.2 0.55 Total 0.45 0.15 0.4 1.00 (a) Show the marginal distribution of direct labor cost and compute its expected value (in dollars), variance, and standard deviation (in dollars). (Round your answer for standard deviation to the nearest cent.) Marginal Distribution of Direct Labor Cost y f(y) yf(y) y − E(y) (y − E(y))2 (y − E(y))2f(y) 43           45           48                     Var(y) =      E(y) =  dollars     σy =  dollars (b) Show the marginal distribution of parts cost and compute its expected value (in dollars), variance, and standard deviation (in dollars). (Round your answer for standard deviation to the nearest cent.) Marginal Distribution of Parts Cost x f(x) xf(x) x − E(x) (x − E(x))2 (x − E(x))2f(x) 85           95                     Var(x) =      E(x) =  dollars     σx =  dollars (c) Total manufacturing cost per unit is the sum of direct labor cost and parts cost. Show the probability distribution for total manufacturing cost per unit. z = x + y f(z) 128   130   133   138   140   143   Total 1.00 (d) Compute the expected value (in dollars), variance, and standard deviation (in dollars) of total manufacturing cost per unit. (Round your answer for standard deviation to two decimal places.) expected value dollarsvariancestandard deviation dollars

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question
Can you please show me how to compute c. and d? I am not sure how to do it and where do I get the numbers for the probability distribution for total manufacturing cost per unit.
 
 
A company has developed a design for a high-quality portable printer. The two key components of manufacturing cost are direct labor and parts. During a testing period, the company has developed prototypes and conducted extensive product tests with the new printer. The company's engineers have developed the bivariate probability distribution shown below for the manufacturing costs. Parts cost (in dollars) per printer is represented by the random variable x and direct labor cost (in dollars) per printer is represented by the random variable y. Management would like to use this probability distribution to estimate manufacturing costs.
Parts (x) Direct Labor (y) Total
43 45 48
85 0.2 0.05 0.2 0.45
95 0.25 0.1 0.2 0.55
Total 0.45 0.15 0.4 1.00
(a)
Show the marginal distribution of direct labor cost and compute its expected value (in dollars), variance, and standard deviation (in dollars). (Round your answer for standard deviation to the nearest cent.)
Marginal Distribution of Direct Labor Cost
y
f(y)
yf(y)
y − E(y)
(y − E(y))2
(y − E(y))2f(y)
43          
45          
48          
         
Var(y) = 
   
E(y) =  dollars
   
σy =  dollars
(b)
Show the marginal distribution of parts cost and compute its expected value (in dollars), variance, and standard deviation (in dollars). (Round your answer for standard deviation to the nearest cent.)
Marginal Distribution of Parts Cost
x
f(x)
xf(x)
x − E(x)
(x − E(x))2
(x − E(x))2f(x)
85          
95          
         
Var(x) = 
   
E(x) =  dollars
   
σx =  dollars
(c)
Total manufacturing cost per unit is the sum of direct labor cost and parts cost. Show the probability distribution for total manufacturing cost per unit.
z = x + y
f(z)
128  
130  
133  
138  
140  
143  
Total 1.00
(d)
Compute the expected value (in dollars), variance, and standard deviation (in dollars) of total manufacturing cost per unit. (Round your answer for standard deviation to two decimal places.)
expected value dollarsvariancestandard deviation dollars
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman