A commonly used unit in everyday language to state weight is the pound (lb). There are actually several formal definitions of pound. One classification system defines a pound-mass (analogous to kg in SI units) and a pound-force (lbf) (analogous to a Newton); this is formally called English Engineering units but also commonly used in US Customary System units. The “pound” in the “pounds per square inch” of psi refers to pound-force. Hence, psi has units of force per area. Note that 1 lbf is defined as the gravitational force generated by 1 lb (mass) by multiplying it by the standard gravitational acceleration at the earth’s surface. Starting with just the two everyday conversion approximations every Canadian should know (1.00 kg ≈ 2.20 lb (mass) and 1.00 inch ≈ 2.54 cm), derive an approximation of 1.00 psi in Pa through unit conversions only (show each step).
A commonly used unit in everyday language to state weight is the pound (lb). There are actually several formal definitions of pound. One classification system defines a pound-mass (analogous to kg in SI units) and a pound-force (lbf) (analogous to a Newton); this is formally called English Engineering units but also commonly used in US Customary System units. The “pound” in the “pounds per square inch” of psi refers to pound-force. Hence, psi has units of force per area. Note that 1 lbf is defined as the gravitational force generated by 1 lb (mass) by multiplying it by the standard gravitational acceleration at the earth’s surface.
Starting with just the two everyday conversion approximations every Canadian should know (1.00 kg ≈ 2.20 lb (mass) and 1.00 inch ≈ 2.54 cm), derive an approximation of 1.00 psi in Pa through unit conversions only (show each step).
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 5 images