Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
A client has an airstream that is 150 ºC and at 1 atm of pressure that contains 50,000 ppm of heptane. To what temperature must air be cooled to remove 40% of its heptane vapor content?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- A horizontal steam pipe (60 mm. OD) carries high pressure steam at 230℃ . Wind flows past this pipe at 1 m/s velocity. The ambient temperature is 32℃. Which mode(s) of convection should we consider here? Calculate the total rate of heat loss per m. length of the pipe.arrow_forward(a) What is the heat loss per unit length of the pipe?(b) The pipe material is switched to PTFE (k = 0.38 W/(m⋅K)). To maintain the same heat loss as theprevious question, if all other parameters are to remain the same as before, what is the required thicknessof the pipe wall in centimeters?arrow_forwardplz write neatly, do not copy and paste solutionarrow_forward
- A heat pump is required for a single-family 2-story, 3-person, 30 ft x 30 ft x 18 ft (L x W x H), energy- efficient residential house in Philadelphia, PA, for a typical winter season. Assuming a comfortable indoor temperature is 70 °F and on a cold winter day the outdoor temperature is 10 °F. Exercise #1: Calculate total heat loss from a house in Philadelphia on a cold winter day. Assume 40% of the wall area is windows with U-value of 0.81 BTU/hr-ft²-°F. The remaining 60% of the walls has a U-value of 0.2 BTU/hr-ft²-°F. The roof has a U value of 0.05 BTU/hr-ft?-°F and the floor U-value is 0.41 BTU/hr-ft²-°F. For simplicity assume that the ground temperature is the same as the air temperature. [However, in your project design calculations you should refine this assumption.] Assume 0.5 air changes per hour (ACH) due to natural ventilation, such as leakage through windows, etc. Neglect any radiative heat loss/grain from the house. Exercise #2: Determine the watts of electricity needed by…arrow_forwardForced air at T = 25°C and V = 10 m/s is used to cool electronic elements on a circuit board. One such ele- ment is a chip, 4 mm X 4 mm, located 120 mm from the leading edge of the board. Experiments have revealed that flow over the board is disturbed by the elements and that convection heat transfer is correlated by an expression of the form Nu,= 0.04 Re0.85 P.1/3 V. T uz bog fr dW ninin tol 1 = 4 mm Chip Board 0:00 Wira L= 120 mm Estimate the surface temperature of the chip if it is dis- sipating 30 mW.arrow_forward2 A wire of diameter D = 2 mm and uniform temperature T has an electrical resistance of 0.01 N/m and a current flow of 20 A. (a) What is the rate at which heat is dissipated per unit length of wire? What is the heat dissipation per unit volume within the wire? (b) If the wire is not insulated and is in ambient air and large surroundings for which T = Tsur = 20°C, what is the temperature T of the wire? The wire has an emissivity of 0.3, and the coefficient associated with heat transfer by natural convection may be approximated by an expression of the form, h = C[(T-T)/D]¹/4, where C = 1.25 W/m7/4.K5/4 (c) If the wire is coated with plastic insulation of 2-mm thickness and a thermal conductivity of 0.25 W/m.K, what are the inner and outer surface temperatures of the insulation? The insulation has an emissivity of 0.9, and the convection coefficient is given by the expression of part (b). Explore the effect of the insu- lation thickness on the surface temperatures. Note: 1. The metal wire…arrow_forward
- the pressure drop across the tube bank, and (c) the rate of condensation of steam inside the tubes. Evaluate the air properties at an assumed mean temperature of 35°C and 1 atm. Is this a good assumption?solve this part tooarrow_forward1. Liquid oxygen is stored in a spherical tank with D = 5 ft. The surface of the tank was isolated with insulation material A with a thickness of 8 in and outside with material B with a thickness of 0.5 ft (kA = 0.022 Btu / j.ft.oF and kB = 0.04 Btu / j.ft.oF). Tank surface temperature (–4) oC and insulation surface temperature 50oC Calculate heat transfer from air to liquid oxygen tank! 2. A 2.0 inch Schedule 40 pipe has k = 27 Btu / h.ft.oF. The fluid in the pipe has h = 30 Btu / h.ft2.oF. The outer surface of the pipe is coated with a fiber glass insulation thickness of 4 mm with k = 0.023 Btu / h.ft.oF. The convection coefficient on the outer surface of the insulation is 2.0 Btu / h.ft2.oF. The temperature of the fluid contained in the pipe is 320oF and the ambient temperature is 70oF. Calculate the heat loss per unit length of pipe! 3. Two parallel plates with a diameter of 60 cm, separated at a distance of 15 cm. The temperature on the top surface is 4 oC and the temperature on…arrow_forward4. The right figure shows a simple combustion calorimeter. The sample is ignited electrically. After a few minutes the temperature of the water and calorimeter is constant at AT higher than the starting temperature. Determine the heat of combustion of a sample from the following data: Sample mass Calorimeter mass Water mass 4 g 500 g 5000 g The heat of combustion is defined as = Sample Inlet 0 75 400 Temperature °F 70.0 Cvcalorimeter Cywater Ufinal products of combustion Pressure, psig Elevation, ft Velocity, ft/s AT Stirrer Uinitial fuel+oxygen Au combustion msample 5. A steady-flow water power plant has the following inlet and outlet conditions: Oxygen Outet 0 0 50 70.1 Water Thermometer Heavy steel bomb 0.12 cal/g °C 1.0 cal/g °C 5 °Carrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The