College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A capacitor has a potential difference of V0 = 375 V between the plates. When the switch S is closed, it is discharged through a resistor of R = 14.5 kΩ. At time t = 10 seconds after the switch is closed, the potential difference between the capacitor plates equals VC = 1.0 V.
a. Calculate the capacitance of the capacitor in farads.
b. Calculate the maximum current Imax that passes through the resistor, in Amperes.
c. Calculate the current I at time t, in Amperes.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The peak current through a capacitor is 10.0 mA. What is the current ifa. The emf frequency is doubled?b. The emf peak voltage is doubled (at the original frequency)?c. The frequency is halved and, at the same time, the emf is doubled?arrow_forwardThe two unknown resistors shown have the same resistance R. When the switch is closed, the current through the battery increases by 50%. What is R?arrow_forwardCan you show how to solve for the current in each branch?arrow_forward
- Consider the circuit below. The capacitor has a capacitance of 11 mF and starts out uncharged. The switch is closed at time t = 0. @ 2 W V = 12 V F2 R₁ = 20 Diagram Description R₂=402 # 3 a. At time t= 0 (immediately after the switch is closed), what is battery? Hint for (a) At time t= 0, the current from the battery is b. A long time after the switch is closed (and capacitor is fully charged), what is the current flowing out from the battery? Hint for (b) 80 F3 R₂ = 30 A long time after the switch is closed, the current from the battery is c. What is the charge on the capacitor a long time after the switch is closed? Hint for (c) The charge on the capacitor a long time after the switch is closed is E m $ R₁ = 30 F4 R % 5 current flowing out from the F5 T 6 F6 Y A. mC. & 7 AA F7 U * 00 8 DII FB ( 9 8 F9arrow_forwardConsider the following RC circuit with a 5 MQ resistor and 1000 nF capacitor in series. The battery provides a potential of 10 V before the switch is closed at time t=0, the capacitor is uncharged. a. what's the time constant? b. what fraction of the final charge Qf is on the capacitor at t=30 s? C. what fraction of the initial current Io is still flowing at t=30 s? E +1arrow_forwarda)What is the current through R1 immediately after the switch S is closed? b) What is the current through R2 after the switch S has been closed for a very long time? Assume that the battery does not go dead.arrow_forward
- An RC circuit, hooked up to a battery as shown in the figure, starts with an uncharged capacitor. The resistance in the circuit is R = 681.0 2 the capacitor has capacitance of C = 88.0 µF and the battery maintains the emf of ɛ = 15.0 V. The switch is closed at time t = 0.0 s and the capacitor begins to charge. R What is the time constant for this circuit? Submit Answer Tries 0/99 What is the charge on the capacitor after the switch has been closed for t = 7.01×10-2 s? Submit Answer Tries 0/99 What is the current through the circuit after the switch has been closed for t = 7.01×10-2 s? Submit Answer Tries 0/99 What is the voltage across the capacitor after the switch has been closed for t = 7.01x10-2 s? Submit Answer Tries 0/99arrow_forwardInitially, for the circuit shown, the switch S is open and the capacitor is uncharged. The switch S is closed at time t = 0. In the figure shown, when the time t is equal to 8.0 s, the charge on the capacitor (in mC), is closest to: a. 4.06 b. 13.2 c. 0.23 d. 2.26 e. 1.33 70 V L www 0.20 ΜΩ 90 μFarrow_forwardRC Circuits: In this circuit, the battery has voltage E = 2.0 V, and each resistor has resistance R = 10 Q. The capacitor, which has capacitance C = 1.0 x10-12 F, carries. initial charge 3.0 x 10-12 C, with the positive charge on the right plate. The switch is closed at time t = 0 s. a. Immediately after time t = 0, what current flows through resistor 1? b. A long time later, what current flows through resistor 1? c. Sketch a rough graph of the charge on the right capacitor plate, as a function of time. દ 8. ww C R 2 R3arrow_forward
- In the RC (series) circuit, R = 1.2 M2 and C = 5.00 µF. It is connected to a 30 volt power source with a www- R switch S. What is the current in the circuit when the capacitor reaches 25 volts? b. 4.17 µA 2.12 μΑ c. 9.3 μΑ 12.4 HAarrow_forwardThere is a current of 0.25 A in the circuit of Figure P23.69.a. What is the direction of the current? Explain.b. What is the value of the resistance R?c. What is the power dissipated by R?d. Make a graph of potential versus position, starting from V = 0 V in the lower left corner and proceeding clockwise.See Figure P23.9 for an example.arrow_forwardIn the figure R1 = 10.7 kΩ, R2 = 14.7 kΩ, C = 0.405 μF, and the ideal battery has emf ε = 25.0 V. First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t = 0. What is the current in resistor 2 at t = 3.80 ms?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON