A brass specimen of the circular cross-section is fractured at 151 kN force and the final length of the specimen at fracture is 49 mm. The fracture strength of the specimen is found to be 74 kN/mm2. The percentage of elongation of the specimen is 42 %. Determine the following (i) Diameter of the specimen ii) Initial length of the specimen iii) Stress under an elastic load of 16 kN iv) Young's Modulus if the elongation is 1.6 mm at 16 kN (v) Final diameter if the percentage of reduction in area is 20 % solve: Initial Cross-sectional Area (in mm2) = The Diameter of the Specimen (in mm) = Initial Length of the Specimen (in mm) =
A brass specimen of the circular cross-section is fractured at 151 kN force and the final length of the specimen at fracture is 49 mm. The fracture strength of the specimen is found to be 74 kN/mm2. The percentage of elongation of the specimen is 42 %.
Determine the following
(i) Diameter of the specimen
ii) Initial length of the specimen
iii) Stress under an elastic load of 16 kN
iv) Young's Modulus if the elongation is 1.6 mm at 16 kN
(v) Final diameter if the percentage of reduction in area is 20 %
solve:
Initial Cross-sectional Area (in mm2) =
The Diameter of the Specimen (in mm) =
Initial Length of the Specimen (in mm) =
We know,
Hence, the initial cross-sectional area is 2.04 mm2
Also,
Hence, the diameter of the specimen is 1.61 mm
We have,
Hence, the initial length of the specimen is 34.51 mm
The stress is given by,
Hence, the stress under an elastic load of 16 kN is 7.84 kN/m2
Step by step
Solved in 5 steps